Advertisement

Output Feedback Image-Based Visual Servoing of Rotorcrafts

  • Jianan Li
  • Hui Xie
  • Rui Ma
  • K. H. Low
Article
  • 69 Downloads

Abstract

This paper presents an improved output feedback based image-based visual servoing (IBVS) law for rotorcraft unmanned aerial vehicles (RUAVs). The control law enables a RUAV with a minimal set of sensors, i.e. an inertial measurement unit (IMU) and a single downward facing camera, to regulate its position and heading relative to a planar visual target consisting of multiple points. As compared to our previous work, twofold improvement is made. First, the desired value of the image feature of controlling the vertical motion of the RUAV is a function of other image features instead of a constant. This modification helps to keep the visual target stay in the camera’s field of view by indirectly adjusting the height of the vehicle. Second, the proposed approach simplifies our previous output feedback law by reducing the dimension of the observer filter state space while the same asymptotic stability result is kept. Both simulation and experimental results are presented to demonstrate the performance of the proposed controller.

Keywords

Rotorcraft UAV Image-based visual servoing Virtual camera Nonlinear backstepping control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by Air Traffic Management Research Institute (ATMRI) in Singapore under the ASBU project (Research Grant No. NTU-ATMRI 2014-D1-LOW).

References

  1. 1.
    Chaumette, F., Hutchinson, S.: Visual servo control part I: basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006)CrossRefGoogle Scholar
  2. 2.
    Shakernia, O., Ma, Y., Koo, T.J., Sastry, S.: Landing an unmanned air vehicle: vision based motion estimation and nonlinear control. Asian J. Control 1(3), 128–145 (1999)CrossRefGoogle Scholar
  3. 3.
    Altug, E., Ostrowski, J., Taylor, C.: Quadrotor control using dual camera visual feedback. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation, vol. 3, pp. 4294–4299. Taipei (2003)Google Scholar
  4. 4.
    Wu, A.D., Johnson, E.N., Proctor, A.A.: Vision-aided inertial navigation for flight control. J. Aerosp. Comput. Inf. Comm. 2(9), 348–360 (2005)CrossRefGoogle Scholar
  5. 5.
    Mejias, L., Saripalli, S., Campoy, P., Sukhatme, G.S.: Visual servoing of an autonomous helicopter in urban areas using feature tracking. J. Field Rob. 23(3–4), 185–199 (2006)CrossRefGoogle Scholar
  6. 6.
    Azrad, S., Kendoul, F., Nonami, K.: Visual servoing of quadrotor micro-air vehicle using color-based tracking algorithm. J. Syst. Des. Dyn. 4(2), 255–268 (2010)Google Scholar
  7. 7.
    García Carrillo, L., Rondon, E., Sanchez, A., Dzul, A., Lozano, R.: Stabilization and trajectory tracking of a quad-rotor using vision. J. Intell. Robot. Syst. 61(1–4), 103–118 (2011)CrossRefGoogle Scholar
  8. 8.
    Rondon, E., Garcia-Carrillo, L.-R., Fantoni, I.: Vision-based altitude, position and speed regulation of a quadrotor rotorcraft. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 628–633. Taipei (2010)Google Scholar
  9. 9.
    Carrillo, L., Flores Colunga, G., Sanahuja, G., Lozano, R.: Quad rotorcraft switching control: an application for the task of path following. IEEE Trans. Control Syst. Technol. 22(4), 1255–1267 (2014)CrossRefGoogle Scholar
  10. 10.
    Hamel, T., Mahony, R.: Visual servoing of an under-actuated dynamic rigid-body system: an image-based approach. IEEE Trans. Robot. Autom. 18(2), 187–198 (2002)CrossRefGoogle Scholar
  11. 11.
    Bourquardez, O., Mahony, R., Guenard, N., Chaumette, F., Hamel, T., Eck, L.: Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE Trans. Robot. 25(3), 743–749 (2009)CrossRefGoogle Scholar
  12. 12.
    Metni, N., Hamel, T., Derkx, F.: Visual tracking control of aerial robotic systems with adaptive depth estimation. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, pp. 6078–6084. Seville (2005)Google Scholar
  13. 13.
    de Plinval, H., Morin, P., Mouyon, P., Hamel, T.: Visual servoing for underactuated VTOL UAVs: a linear, homography-based framework. Int. J. Robust. Nonlin. 24(16), 2285–2308 (2013)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ozawa, R., Chaumette, F.: Dynamic visual servoing with image moments for a quadrotor using a virtual spring approach. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, pp. 5670–5676. Shanghai (2011)Google Scholar
  15. 15.
    Ozawa, R., Chaumette, F.: Dynamic visual servoing with image moments for an unmanned aerial vehicle using a virtual spring approach. Adv. Robot. 27(9), 683–696 (2013)CrossRefGoogle Scholar
  16. 16.
    Xie, H.: Dynamic visual servoing of rotary wing unmanned aerial vehicles. Ph.D. dissertation, Dept. Electrical and Computer Engineering, University of Alberta, Edmonton (2016)Google Scholar
  17. 17.
    Espiau, B.: Effect of camera calibration errors on visual servoing in robotics. In: Yoshikawa, T., Miyazaki F. (eds.) Experimental Robotics III, ser. Lecture Notes in Control and Information Sciences, vol. 200, pp. 182–192. Springer, Berlin (1994)Google Scholar
  18. 18.
    Mahony, R., Corke, P., Hamel, T.: Dynamic image-based visual servo control using centroid and optic flow features. J. Dyn. Syst-T. ASME 130, 011005–01–011005–12 (2007)CrossRefGoogle Scholar
  19. 19.
    Bras, F.L., Mahony, R., Hamel, T., Binetti, P.: Dynamic image-based visual servo control for an aerial robot: theory and experiments. Int. J. Optomechatron. 2(3), 296–325 (2008)CrossRefGoogle Scholar
  20. 20.
    Herissé, B., Hamel, T., Mahony, R., Russotto, F.-X.: Landing a VTOL unmanned aerial vehicle on a moving platform using optical flow. IEEE Trans. Robot. 28(1), 77–89 (2012)CrossRefGoogle Scholar
  21. 21.
    Mebarki, R., Siciliano, B.: Velocity-free image-based control of unmanned aerial vehicles. In: Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1522–1527 (2013)Google Scholar
  22. 22.
    Mebarki, R., Lippiello, V., Siciliano, B.: Nonlinear visual control of unmanned aerial vehicles in GPS-denied environments. IEEE Trans. Robot. 31(4), 1004–1017 (2015)CrossRefGoogle Scholar
  23. 23.
    Le Bras, F., Hamel, T., Mahony, R., Treil, A.: Output feedback observation and control for visual servoing of VTOL UAVs. Int. J. Robust. Nonlin. 21(9), 1008–1030 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jabbari Asl, H., Oriolo, G., Bolandi, H.: Output feedback image-based visual servoing control of an underactuated unmanned aerial vehicle. Proc. Inst. Mech. Eng. I.-J. Sys. 228(7), 435–448 (2014)Google Scholar
  25. 25.
    Asl, H.J., Yoon, J.: Robust image-based control of the quadrotor unmanned aerial vehicle. Nonlinear Dyn. 85(3), 2035–2048 (2016)CrossRefzbMATHGoogle Scholar
  26. 26.
    Abdessameud, A., Janabi-Sharifi, F.: Image-based tracking control of VTOL unmanned aerial vehicles. Automatica 53, 111–119 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Xie, H., Low, K.H.: Dynamic visual servoing of a rotary-wing unmanned aerial vehicle without velocity measurement. In: Proceeding of AIAA Guidance, Navigation, and Control Conference, Grapevine, Art. no. AIAA 2017-1745 (2017)Google Scholar
  28. 28.
    Xie, H., Low, K.H., He, Z.: Adaptive visual servoing of unmanned aerial vehicles in GPS-denied environments. IEEE/ASME Trans. Mechatron. 22(6), 2554–2563 (2017)CrossRefGoogle Scholar
  29. 29.
    Fink, G., Xie, H., Lynch, A.F., Jagersand, M.: Nonlinear dynamic image-based visual servoing of a quadrotor. J. Unmanned Veh. Syst. 3(1), 1–21 (2015)CrossRefGoogle Scholar
  30. 30.
    Xie, H., Li, J., Low, K.-H.: Dynamic output feedback image-based visual servoing of rotorcraft UAVs. In: Proceedings of the 2017 International Conference Unmanned Aircraft Systems, pp. 1361–1367. Miami (2017)Google Scholar
  31. 31.
    Xie, H., Lynch, A.F.: Input saturated visual servoing for unmanned aerial vehicles. IEEE/ASME Trans. Mechatron. 22(2), 952–960 (2017)CrossRefGoogle Scholar
  32. 32.
    Krstic, M., Kokotovic, P.V., Kanellakopoulos, I.: Nonlinear and Adaptive Control Design, 1st edn. Wiley, New York (1995)Google Scholar
  33. 33.
    Meier, L., Honegger, D., Pollefeys, M.: PX4: a node-based multithreaded open source robotics framework for deeply embedded platforms. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle (2015)Google Scholar
  34. 34.
    Pixy CMUcam5. Accessed 5 June 2015. [Online]. Available: http://www.cmucam.org/projects/cmucam5/wiki

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Data and Electrical EngineeringUniversity of Technology SydneyUltimoAustralia
  3. 3.College of Mechanical and Electrical EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations