Skip to main content
Log in

Collision-Free Trajectory Generation and Tracking for UAVs Using Markov Decision Process in a Cluttered Environment

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A collision-free trajectory generation and tracking method capable of re-planning unmanned aerial vehicle (UAV) trajectories can increase flight safety and decrease the possibility of mission failures. In this paper, a Markov decision process (MDP) based algorithm combined with backtracking method is presented to create a safe trajectory in the case of hostile environments. Subsequently, a differential flatness method is adopted to smooth the profile of the rerouted trajectory for satisfying the UAV physical constraints. Lastly, a flight controller based on passivity-based control (PBC) is designed to maintain UAV’s stability and trajectory tracking performance. Simulation results demonstrate that the UAV with the proposed strategy is capable of avoiding obstacles in a hostile environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gundlach, J.: Designing Unmanned Aircraft Systems: A Comprehensive Approach. American Institute of Aeronautics and Astronautics, Reston (2012)

    Book  Google Scholar 

  2. Halit, E., Kemal, L.: 3D path planning for multiple UAVs for maximum information collection. J. Intell. Robot. Syst. 73(1–4), 737–762 (2014)

    Google Scholar 

  3. Angelov, P.: Sense and Avoid in UAS: Research and Applications. Wiley, Hoboken (2012)

    Book  Google Scholar 

  4. Yang, K., Gan, S.K., Sukkarieh, S.: An efficient path planning and control algorithm for RUAV’s in unknown and cluttered environment. J. Intell. Robot. Syst. 57, 101–122 (2010)

    Article  MATH  Google Scholar 

  5. Yu, X., Zhang, Y.M.: Sense and avoid technologies with applications to unmanned aircraft systems: Review and prospects. Prog. Aerosp. Sci. 74, 152–166 (2015)

    Article  Google Scholar 

  6. Gui, Y., Guo, P., Zhang, H., Lei, Z., Du, X., Du, J., Yu, Q.: Airborne vision-based navigation method for UAV accuracy landing using infrared lamps. J. Intell. Robot. Syst. 72(2), 197–218 (2013)

    Article  Google Scholar 

  7. Kuchar, J.K., Yang, L.C.: A review of conflict detection and resolution modeling methods. IEEE Trans. Intell. Trans. Syst. 1(4), 179–189 (2000)

    Article  Google Scholar 

  8. Akmeliawati, R., Mareels, I.M.Y.: Nonlinear energy-based control method for aircraft automatic landing systems. IEEE Trans. Control Syst. Technol. 18(4), 871–884 (2010)

    Article  Google Scholar 

  9. Khatib, O.: Real time obstacle avoidance for manipulators and bile Robots. Int. J. Rob. Res. 5(1), 90–99 (1986)

    Article  Google Scholar 

  10. Lavalle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  11. Chuang, J.H., Ahuja, N.: An analytically tractable potential field model of free space and its application in obstacle avoidance. IEEE Trans. Syst. Man. Cybern. B. Cybern. 28, 729–736 (1998)

    Article  Google Scholar 

  12. Geiger, B., Horn, J., Delullo, A., Niessner, A., Long, L.: Optimal path planning of UAV using direct collocation with nonlinear programming. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, Keystone, Colorado (2006)

  13. Sridhar, B., Ng, H.K., Chen, N.Y.: Aircraft trajectory optimization and contrails avoidance in the presence of winds. J. Guid. Control. Dyn. 34(5), 1577–1583 (2011)

    Article  Google Scholar 

  14. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)

    MATH  Google Scholar 

  15. Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C., Kostaras, A.N.: Evolutionary algorithm based offline/online path planner for UAV navigation. IEEE Trans. Syst. B Man. Cybern. 33(6), 898–912 (2003)

    Article  Google Scholar 

  16. Son, Y.S., Baldick, R.: Hybrid coevolutionary programming for nash equilibrium search in games with local optima. IEEE Trans. Evol. Comput. 8(4), 305–315 (2004)

    Article  Google Scholar 

  17. Kim, D.H., Shin, S.: Self-organization of decentralized swarm agents based on modified particle swarm algorithm. J. Intell. Robot. Syst. 46(2), 129–149 (2006)

    Article  Google Scholar 

  18. Mauro, P., Conway, B.A.: Particle swarm optimization applied to space trajectories. J. Guid. Control Dyn. 33(5), 1429–1441 (2010)

    Article  Google Scholar 

  19. Pinto, A.M., Moreira, A.P., Costa, P.G.: A localization method based on map-matching and particle swarm optimization. J. Intell. Robot. Syst. 77(2), 313–326 (2015)

    Article  Google Scholar 

  20. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Global. Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fu, Y., Zhang, Y.M., Yu, X.: An advanced sense and collision avoidance strategy for Unmanned Aerial Vehicles in landing phase. IEEE Aerosp. Electron. Syst. Mag. 31(9), 40–52 (2016)

    Article  Google Scholar 

  22. Bhattacharya, P., Gavrilova, M.L.: Roadmap-based path planning-using the Voronoi diagram for a clearance-based shortest path. IEEE Robot. Autom. Mag. 15(2), 58–66 (2008)

    Article  Google Scholar 

  23. Pehlivanoglu, Y.V.: A new vibrational generic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV. Aerosp. Sci. Technol. 16(1), 47–55 (2012)

    Article  Google Scholar 

  24. Sridharan, K., Priya, T.K.: The design of a hardware accelerator for real-time complete visibility graph construction and efficient FPGA implementation. IEEE Trans. Ind. Electron. 52(4), 1185–1187 (2005)

    Article  Google Scholar 

  25. Kavraki, L.E., Švestka, P., Latombe, J.C.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12, 566–580 (1994)

    Article  Google Scholar 

  26. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Randomized preprocessing of configuration for fast path planning. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 2138–2146, San Diego (1994)

  27. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  28. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  29. Lian, Z.T., Deshmukh, A.: Performance prediction of an unmanned airborne vehicle multi-agent system. Eur. J. Oper. Res. 172(2), 680–695 (2006)

    Article  MATH  Google Scholar 

  30. Billingsley, T.B., Kochenderfer, M.J., Chryssanthacopoulos, J.P.: Collision avoidance for general aviation. IEEE Aerosp. Electron. Syst. Mag. 27(7), 1–17 (2011)

    Google Scholar 

  31. Ure, N.K., Chowdhary, G., Chen, Y.F., How, J.P., Vian, J.: Distributed learning for planning under uncertainty problems with heterogeneous teams. J. Intell. Robot. Syst. 74(1–2), 529–544 (2014)

    Article  Google Scholar 

  32. Fu, Y., Yu, X., Zhang, Y.M.: Sense and collision avoidance of Unmanned Aerial Vehicles using Markov decision process and flatness approach. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 714–719. Lijiang (2015)

  33. Miele, A.: Flight Mechanics: Theory of Flight Paths. Courier Dover Publications, New York (2016)

    Google Scholar 

  34. Bai, H., Hsu, D., Kochenderfer, M.J., et al.: Unmanned aircraft collision avoidance using continuous-state POMDPs. Robot. Auton. Syst. 1, 1–8 (2012)

    Google Scholar 

  35. Chamseddine, A., Zhang, Y.M., Rabbath, C.A., Theilliol, D.: Trajectory planning and re-planning strategies applied to a quadrotor unmanned aerial vehicle. J. Guid. Control. Dyn. 35(5), 1667–1671 (2012)

    Article  Google Scholar 

  36. Yao, P., Wang, H., Su, Z.: Real-time path planning of unmanned aerial vehicle for target tracking and obstacle avoidance in complex dynamic environment. Aerosp. Sci. Technol. 47, 269–279 (2015)

    Article  Google Scholar 

  37. Powell, W.B.: Approximate Dynamic Programming. Wiley-Interscience, Hoboken (2008)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada, in part by the National Natural Science Foundation of China under Grant 61573282 and Grant 61603130. The authors would like to express their sincere gratitude to the Editor-in-Chief, the Guest Editors, and the anonymous reviewers whose insightful comments have helped to improve the quality of this paper considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youmin Zhang.

Appendices

Appendix A

Based on the condition that slide angle β = 0 and pitch angle 𝜃 = 0, the partial differential of the Rayleigh dissipation function (\(\frac {\partial F}{\partial \dot {\phi } }, \frac {\partial F}{\partial \dot {\varphi } })\) are as follows:

$$\begin{array}{@{}rcl@{}} \frac{\partial F}{\partial \dot{\phi} }\!&=&\!-1051.05\cos \left( \varphi \right)\left( 6.6(-11\dot{\phi} \,+\,5\dot{\varphi} \cos \left( \phi \right) \right)\sin \left( \phi \right)/V)V^{2}\\ &&\!+ 1051.05\cos \left( \phi \right)\sin {\left( \varphi \right)(-0.4461-92.4424}\dot{\varphi} \sin \left( \phi \right)/V\\ &&\!+ 0.11(1.0656\,+\,24.6016\left( \frac{\dot{\varphi} \sin {\left( \phi \right))}}{V}\,+\,0.143V^{2} \right)\\ &&\!-1051.05(\sin {\left( \phi \right)\sin {\left( \varphi \right))\!\left( 6.6\left( 1.7\dot{\phi} \,-\,11.5\varphi \cos \left( \phi \right) \right)\!/V \right)}}V^{2}\\ \frac{\partial F}{\partial \dot{\varphi} }&=&-1051.05\cos \left( \varphi \right)\left( 6.6(-11\dot{\phi} + 5\dot{\varphi} \cos \left( \phi \right) \right)/V)V^{2}\\ &&-1051.05\sin {\left( \phi \right)(-0.4461-92.4424}\dot{\varphi} \sin \left( \phi \right)\cos \left( \theta \right)/V\\ &&+ 0.11(1.0656 + 24.6016\left( \frac{\dot{\varphi} \sin {\left( \phi \right))}}{V}+ 0.143V^{2} \right)\\ &&-1051.05\cos \left( \phi \right)\left( \frac{6.6\left( -11.5\dot{\varphi} \cos \left( \phi \right) \right)}{V} \right)V^{2} \end{array} $$

Input matrix \( M=\left [ {\begin {array}{*{20}c} M_{\phi ,\delta _{a}} & M_{\phi ,\delta _{r}}\\ M_{\varphi ,\delta _{a}} & M_{\varphi ,\delta _{r}} \end {array}} \right ]\) which are due to drag, lift and side force can be expressed as follows:

$$\begin{array}{@{}rcl@{}} M_{\phi,\delta_{a}}&=&-630.63V^{2}\cos \left( \varphi \right)\\ M_{\phi,\delta_{r}}&=&231.231V^{2}\cos \left( \varphi \right)-634.413V^{2}\sin {\left( \phi \right)\sin \left( \varphi \right)}\\ M_{\varphi,\delta_{a}}&=&0\\ M_{\varphi,\delta_{r}}&=&-634.413V^{2}\cos \left( \phi \right) \end{array} $$

Appendix B

  1. A.

    Procedure of Policy Iteration

    1. 1.

      Initialization

      V (s) ∈ R and π(s) ∈ A(s) arbitrarily for all sS

    2. 2.

      Policy Evaluation Repeat 𝜗←0 For each sS:

      $$v\leftarrow V(s) $$
      $$V(s)\leftarrow \sum\limits_{s^{\prime}} {P_{ss^{\prime}}^{a}\left[ R_{ss^{\prime}}^{a}+\gamma V(s^{\prime}) \right]} $$
      $$\vartheta \longleftarrow max\left( \vartheta, \left| v-V(s) \right| \right) $$

      until 𝜗 < 𝜃 (a small positive number)

    3. 3.

      Policy Improvement

      Policy stable ← true

      For each sS:

      $$ b\leftarrow \pi (s)$$
      $$\pi (s)\leftarrow arg ~{max}_{a}\sum\limits_{s\prime} {P_{ss^{\prime}}^{a}\left[ R_{ss^{\prime}}^{a}+\gamma V(s^{\prime}) \right]} $$

      If bπ(s), then Policy stable ← false

      If policy stable, then stop; else, go to 2.

Appendix C

Fig. 16
figure 16

The integration of backtracking method with MDP

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Zhou, X. & Zhang, Y. Collision-Free Trajectory Generation and Tracking for UAVs Using Markov Decision Process in a Cluttered Environment. J Intell Robot Syst 93, 17–32 (2019). https://doi.org/10.1007/s10846-018-0802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-018-0802-z

Keywords

Navigation