Multi-Camera Active-Vision for Markerless Shape Recovery of Unknown Deforming Objects



A novel multi-camera active-vision reconfiguration method is proposed for the markerless shape recovery of unknown deforming objects. The proposed method implements a model fusion technique to obtain a complete 3D mesh-model via triangulation and a visual hull. The model is tracked using an adaptive particle filtering algorithm, yielding a deformation estimate that can, then, be used to reconfigure the cameras for improved surface visibility. The objective of reconfiguration is maximization of the total surface area visible through stereo triangulation. The surface area based objective function directly relates to maximizing the accuracy of the shape recovered, as stereo triangulation is more accurate than visual hull building when the number of viewpoints is limited. The reconfiguration process comprises workspace discretization, visibility estimation, optimal stereo-pose selection, and path planning to ensure 2D tracked feature consistency. In contrast to other reconfiguration techniques that rely on a priori known, and at times static, object models, our method focuses on a priori unknown deforming objects. The proposed method operates on-line and has been shown to outperform static-camera based systems through extensive simulations and experiments with an increased surface visibility in the presence of occluding obstacles.


Multi-camera vision Deformable objects Active-vision Reconfiguration Machine vision planning 



A matrix of the object model’s center point repeated k-times [k × 3].


An indexing matrix of all positional combinations [p m a x × c k ].


A filtered indexing matrix [p r e d × c k ].


The system and workspace constraints at demand instant t.


The object model at demand instant t.


The expected object model deformation at the next demand instant.


The expected obstacle model at the next demand instant


The set of camera parameters at demand instant t.


The surface area of the object at demand instant t.


The estimated surface area visibility score for the k t h positional combination.


A matrix of test positional vectors for reconfiguration [n v × 3].

V(t + 1)

The expected model visibility at the next demand instant.


The normalized visibility proportion mapping matrix [n p × n v ].

\(\textbf {V}_{\textbf {map}}^{*}\)

A subset of V map [n p × c n ].


A matrix of test points from model M+ [k × 3]

\(\textbf {X}_{\textbf {test}}^{*}\)

The set of test points projected onto an arbitrary plane [k × 3].


A Boolean matrix of test point visibly [k × 4].


The area of the j t h polygon in the model at the current demand instant.


The number of stereo camera pairs at the current demand instant.


The number of filtered stereo camera pairs at the current demand instant.


The center point of the object model [1 × 3].

\(\mathbf {c}_{M}^{+}\)

The projected center point of the object model [1 × 3].

\(\mathbf {c}_{M}^{*}\)

A point in space produced by the triangulation of two rays associated with the object’s center point and stereo-pair placement, [1 × 3]


The number of stereo camera pairs at the current demand instant


The center point of the obstacle [1 × 3].


A vector of distances along the test position vector from the model center to all test points.

\(d_{thresh}^{d} \)

The maximum allowable distance for d d .


A vector of distances between the model center and all test points on a plane.

\(d_{thresh}^{w} \)

The maximum allowable distance for d w .


The distance from the object’s bounding rectangle to the image edge in pixels.


The stereo camera pair placement score.


An arbitrary row of K matrix [1 × c k ].


The number of model polygons at the current demand instant.


The number of test positional vectors.


A point on a test positioning vector [1 × 3].


The mean stereo camera pair’s position at the current demand instant [1 × 3].

\(\mathbf {p}_{c}^{+} \)

The mean stereo camera pair’s position at the next demand instant [1 × 3].

\(\mathbf {p}_{b}^{1} ,\mathbf {p}_{b}^{2} \)

The Bézier-curve control points [1 × 3].


The total number of possible positional combinations.


The number of positional combinations used.


The unit vector normal of an arbitrary test point.


A vector of Boolean visibility values for each test point [k × 1].


A vector of Boolean visibility values for each test point [k × 1].


A vector of Boolean visibility values for each test point [k × 1].


A unit test vector from V [1 × 3]


A vector of Boolean visibility values for each test point [k × 1].


A vector of logical conjunction of Y across rows [k × 1].


The maximum path motion angle.


The minimum angular separation between two sets of stereo camera pairs.

\(\sigma _{thresh}^{d} \)

The standard deviation threshold value for depth operator.

\(\sigma _{thresh}^{w} \)

The standard deviation threshold value for depth operator.


The angular separation between the test positional vector and a test point normal.


The maximum angle between a test positional vector and point normal.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to acknowledge the support received, in part, by the Natural Sciences and Engineering Research Council of Canada (NSERC).


  1. 1.
    Song, B., Ding, C., Kamal, A., Farrell, J.A., Roy-Chowdhury, A.K.: Distributed camera networks. IEEE Signal Process. Mag. 28(3), 20–31 (2011)CrossRefGoogle Scholar
  2. 2.
    Piciarelli, C., Esterle, L., Khan, A., Rinner, B., Foresti, G.L.: Dynamic reconfiguration in camera networks: a short survey. IEEE Trans. Circuits Syst. Video Technol. 26(5), 965–977 (2016)CrossRefGoogle Scholar
  3. 3.
    Ilie, A., Welch, G., Macenko, M.: A Stochastic Quality Metric for Optimal Control of Active Camera Network Configurations for 3D Computer Vision Tasks. In: ECCV Workshop on Multicamera and Multimodal Sensor Fusion Algorithms and Applications, pp 1–12 (2008)Google Scholar
  4. 4.
    Cowan, C.K.: Model-Based Synthesis of Sensor Location. In: IEEE International Conference on Robotics and Automation (ICRA), pp 900–905 (1988)Google Scholar
  5. 5.
    Tarabanis, K.A., Tsai, R.Y., Abrams, S.: Planning Viewpoints that Simultaneously Satisfy Several Feature Detectability Constraints for Robotic Vision. In: International Conference on Advanced Robotics “Robots in Unstructured Environments”, vol. 2, pp 1410–1415 (1991)Google Scholar
  6. 6.
    Qureshi, F.Z., Terzopoulos, D.: Surveillance in Virtual Reality: System Design and Multi-Camera Control. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–8 (2007)Google Scholar
  7. 7.
    Piciarelli, C., Micheloni, C., Foresti, G.L.: PTZ Camera Network Reconfiguration. In: International Conference on Distributed Smart Cameras (ICDSC), pp 1–7 (2009)Google Scholar
  8. 8.
    Collins, R.T., Amidi, O., Kanade, T.: An Active Camera System for Acquiring Multi-View Video. In: International Conference on Image Processing, pp 1–4 (2002)Google Scholar
  9. 9.
    Chen, S.Y., Li, Y.F.: Vision sensor planning for 3-d model acquisition. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 35(5), 894–904 (2005)CrossRefGoogle Scholar
  10. 10.
    Schramm, F., Geffard, F., Morel, G., Micaelli, A.: Calibration Free Image Point Path Planning Simultaneously Ensuring Visibility and Controlling Camera Path. In: IEEE International Conference on Robotics and Automation (ICRA), pp 2074–2079 (2007)Google Scholar
  11. 11.
    Amamra, A., Amara, Y., Benaissa, R., Merabti, B.: Optimal Camera Path Planning for 3D Visualisation. In: SAI Computing Conference, pp 388–393 (2016)Google Scholar
  12. 12.
    Mir-Nasiri, N.: Camera-Based 3D Object Tracking and Following Mobile Robot. In: IEEE Conference on Robotics, Automation and Mechatronics, pp 1–6 (2006)Google Scholar
  13. 13.
    Abrams, S., Allen, P.K., Tarabanis, K.A.: Dynamic Sensor Planning. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp 605–610 (1993)Google Scholar
  14. 14.
    Tarabanis, K.A., Tsai, R.Y., Allen, P.K.: The MVP sensor planning system for robotic vision tasks. IEEE Trans. Robot. Autom. 11(1), 72–85 (1995)CrossRefGoogle Scholar
  15. 15.
    Christie, M., Machap, R., Normand, J.-M., Olivier, P., Pickering, J.: Virtual Camera Planning: a Survey. In: International Symposium on Smart Graphics, pp 40–52 (2005)Google Scholar
  16. 16.
    Bakhtari, A., Naish, M.D., Eskandari, M., Croft, E.A., Benhabib, B.: Active-vision-based multisensor surveillance-an implementation. IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev. 36(5), 668–680 (2006)CrossRefGoogle Scholar
  17. 17.
    MacKay, M.D., Fenton, R.G., Benhabib, B.: Pipeline-architecture based real-time active-vision for human-action recognition. J. Intell. Robot. Syst. 72(3–4), 385–407 (2013)CrossRefGoogle Scholar
  18. 18.
    Schacter, D.S., Donnici, M., Nuger, E., MacKay, M.D., Benhabib, B.: A multi-camera active-vision system for deformable-object-motion capture. J. Intell. Robot. Syst. 75(3), 413–441 (2014)CrossRefGoogle Scholar
  19. 19.
    Herrera, J.L. A., Chen, X.: Consensus Algorithms in a Multi-Agent Framework to Solve PTZ Camera Reconfiguration in UAVs. In: International Conference on Intelligent Robotics and Applications, pp 331–340 (2012)Google Scholar
  20. 20.
    Konda, K.R., Conci, N.: Real-Time Reconfiguration of PTZ Camera Networks Using Motion Field Entropy and Visual Coverage. In: Proceedings of the International Conference on Distributed Smart Cameras, p 18 (2014)Google Scholar
  21. 21.
    Natarajan, P., Hoang, T.N., Low, K.H., Kankanhalli, M., Hoang, T.N., Low, K.H.: Decision-Theoretic Coordination and Control for Active Multi-Camera Surveillance in Uncertain, Partially Observable Environments. In: International Conference on Distributed Smart Cameras (ICDSC), pp 1–6 (2012)Google Scholar
  22. 22.
    Song, B., Soto, C., Roy-Chowdhury, A.K., Farrell, J.A.: Decentralized Camera Network Control Using Game Theory. In: 2008 Second ACM/IEEE International Conference on Distributed Smart Cameras, pp 1–8 (2008)Google Scholar
  23. 23.
    Ding, C., Song, B., Morye, A., Farrell, J.A., Roy-Chowdhury, A.K.: Collaborative sensing in a distributed PTZ camera network. IEEE Trans. Image Process. 21(7), 3282–3295 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Del Bimbo, A., Dini, F., Lisanti, G., Pernici, F.: Exploiting distinctive visual landmark maps in pan-tit-zoom camera networks. Comput. Vis. Image Underst. 114(6), 611–623 (2010)CrossRefGoogle Scholar
  25. 25.
    Piciarelli, C., Micheloni, C., Foresti, G.L.: Occlusion-Aware Multiple Camera Reconfiguration. In: International Conference on Distributed Smart Cameras (ICDSC), p 88 (2010)Google Scholar
  26. 26.
    Indu, S., Chaudhury, S., Mittal, N.R., Bhattacharyya, A.: Optimal Sensor Placement for Surveillance of Large Spaces. In: International Conference on Distributed Smart Cameras (ICDSC), pp 1–8 (2009)Google Scholar
  27. 27.
    Schwager, M., Julian, B.J., Angermann, M., Rus, D.: Eyes in the sky: decentralized control for the deployment of robotic camera networks. Proc. IEEE 99(9), 1541–1561 (2011)CrossRefGoogle Scholar
  28. 28.
    Konda, K.R., Rosani, A., Conci, N., De Natale, F.G.B.: Smart Camera Reconfiguration in Assisted Home Environments for Elderly Care. In: European Conference on Computer Vision (ECCV), pp 45–58 (2014)Google Scholar
  29. 29.
    Tarabanis, K.A., Allen, P.K., Tsai, R.Y.: A survey of sensor planning in computer vision. IEEE Trans. Robot. Autom. 11(1), 86–104 (1995)CrossRefGoogle Scholar
  30. 30.
    Pito, R.: A solution to the next best view problem for automated surface acquisition. IEEE Trans. Pattern Anal. Mach. Intell. 21(10), 1016–1030 (1999)CrossRefGoogle Scholar
  31. 31.
    Wong, L.M., Dumont, C., Abidi, M.A.: Next Best View System in a 3D Object Modeling Task. In: Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA’99 (Cat. No.99EX375), pp 306–311 (1999)Google Scholar
  32. 32.
    Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding Horizon ‘Next-Best-View’ Planner for 3D Exploration. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp 1462–1468 (2016)Google Scholar
  33. 33.
    Liska, C., Sablatnig, R.: Adaptive 3D Acquisition Using Laser Light. In: Czech Pattern Recognition Workshop, pp 111–117 (2000)Google Scholar
  34. 34.
    Chan, M.-Y., Mak, W.-H., Qu, H.: An Efficient Quality-Based Camera Path Planning Method for Volume Exploration. In: International Symposium on Visual Computing, pp 12–21 (2008)Google Scholar
  35. 35.
    Benhamou, F., Goualard, F., Languénou, É., Christie, M.: Interval constraint solving for camera control and motion planning. ACM Trans. Comput. Log. 5(4), 732–767 (2004)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Assa, J., Wolf, L., Cohen-Or, D.: The virtual director: a correlation-based online viewing of human motion. Comput. Graph. Forum 29(2), 595–604 (2010)CrossRefGoogle Scholar
  37. 37.
    Naish, M.D., Croft, E.A., Benhabib, B.: Simulation-Based Sensing-System Configuration for Dynamic Dispatching. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 5, pp 2964–2969 (2001)Google Scholar
  38. 38.
    Naish, M.D., Croft, E.A., Benhabib, B.: Coordinated dispatching of proximity sensors for the surveillance of manoeuvring targets. Robot. Comput. Integr. Manuf. 19(3), 283–299 (2003)CrossRefGoogle Scholar
  39. 39.
    Bakhtari, A., Benhabib, B.: An active vision system for multitarget surveillance in dynamic environments. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 37(1), 190–198 (2007)CrossRefGoogle Scholar
  40. 40.
    Bakhtari, A., MacKay, M.D., Benhabib, B.: Active-vision for the autonomous surveillance of dynamic, multi-object environments. J. Intell. Robot. Syst. 54(4), 567–593 (2009)CrossRefMATHGoogle Scholar
  41. 41.
    Tan, J.K., Ishikawa, S., Yamaguchi, I., Naito, T.: Yokota, m.: 3-D recovery of human motion by mobile stereo cameras. Artif. Life Robot. 10(1), 64–68 (2006)CrossRefGoogle Scholar
  42. 42.
    Malik, R., Malik, R., Bajcsy, P., Bajcsy, P.: Automated Placement of Multiple Stereo Cameras. In: ECCV Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras (2008)Google Scholar
  43. 43.
    Hasler, N., Rosenhahn, B., Thormählen, T., Wand, M., Gall, J., Seidel, H.P.: Markerless Motion Capture with Unsynchronized Moving Cameras. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 224–231 (2009)Google Scholar
  44. 44.
    MacKay, M.D., Fenton, R.G., Benhabib, B.: Time-varying-geometry object surveillance using a multi-camera active-vision system. Int. J. Smart Sens. Intell. Syst. 1(3), 679–704 (2008)Google Scholar
  45. 45.
    MacKay, M.D., Fenton, R.G., Benhabib, B.: Multi-camera active surveillance of an articulated human form - an implementation strategy. Comput. Vis. Image Underst. 115(10), 1395–1413 (2011)CrossRefGoogle Scholar
  46. 46.
    Hofmann, M., Gavrila, D.M.: Multi-view 3D human pose estimation in complex environment. Int. J. Comput. Vis. 96(1), 103–124 (2012)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Schacter, D.S.: Multi-Camera Active-Vision System reconfiguration for deformable object motion capture. University of toronto (2014)Google Scholar
  48. 48.
    Zhao, W., Gao, S., Lin, H.: A robust hole-filling algorithm for triangular mesh. Vis. Comput. 23(12), 987–997 (2007)CrossRefGoogle Scholar
  49. 49.
    Hilton, A., Stoddart, A.J., Illingworth, J., Windeatt, T.: Reliable surface reconstruction from multiple range images, pp. 117–126 (1996)Google Scholar
  50. 50.
    Davis, J., Marschner, S.R., Garr, M., Levoy, M.: Filling Holes in Complex Surfaces Using Volumetric Diffusion. In: Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission, pp 428–861 (2002)Google Scholar
  51. 51.
    Kalal, Z., Matas, J., Mikolajczyk, K.: Online Learning of Robust Object Detectors during Unstable Tracking. In: 2009 IEEE 12Th Int. Conf. Comput. Vis. Work. ICCV Work. 2009, pp 1417–1424 (2009)Google Scholar
  52. 52.
    Forsyth, D.A., Ponce, J.: Computer Vision: a Modern Approach, 2Nd Edn. Pearson, London (2012)Google Scholar
  53. 53.
    Hughes, J.F. et al.: Computer Graphics: Principles and Practice, 3Rd Edn. Addison-Wesley Professional, Boston (2013)Google Scholar
  54. 54.
    Laurentini, A.: Visual hull concept for silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150–162 (1994)CrossRefGoogle Scholar
  55. 55.
    Terauchi, T., Oue, Y., Fujimura, K.: A Flexible 3D Modeling System Based on Combining Shape-From-Silhouette with Light-Sectioning Algorithm. In: International Conference on 3-D Digital Imaging and Modeling, pp 196–203 (2005)Google Scholar
  56. 56.
    Hernández Esteban, C., Schmitt, F.: Silhouette and stereo fusion for 3d object modeling. Comput. Vis. Image Underst. 96(3), 367–392 (2004)CrossRefGoogle Scholar
  57. 57.
    Cremers, D., Kolev, K.: Multiview stereo and silhouette consistency via convex functionals over convex domains. IEEE Trans. Pattern Anal. Mach. Intell. 33(6), 1161–1174 (2011)CrossRefGoogle Scholar
  58. 58.
    Liu, Y., Dai, Q., Xu, W.: A point-cloud-based multiview stereo algorithm for free-viewpoint video. IEEE Trans. Vis. Comput. Graph. 16(3), 407–418 (2010)CrossRefGoogle Scholar
  59. 59.
    Hebert, P. et al.: Combined Shape, Appearance and Silhouette for Simultaneous Manipulator and Object Tracking. In: International Conference on Robotics and Automation, pp 2405–2412 (2012)Google Scholar
  60. 60.
    Song, P., Wu, X., Wang, M.Y.: Volumetric stereo and silhouette fusion for image-based modeling. Vis. Comput. 26(12), 1435–1450 (2010)CrossRefGoogle Scholar
  61. 61.
    Nuger, E., Benhabib, B.: Multicamera fusion for shape estimation and visibility analysis of unknown deforming objects. J. Electron. Imaging 25(4), 41009 (2016)CrossRefGoogle Scholar
  62. 62.
    Huang, C.-H., Cagniart, C., Boyer, E., Ilic, S.: A bayesian approach to multi-view 4D modeling. Int. J. Comput. Vis. 116(2), 115–135 (2016)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Matusik, W., Buehler, C., Raskar, R., Gortler, S.J., McMillan, L.: Image-Based Visual Hulls. In: Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp 369–374 (2000)Google Scholar
  64. 64.
    Corazza, S., Mündermann, L., Gambaretto, E., Ferrigno, G., Andriacchi, T.P.: Markerless motion capture through visual hull, articulated ICP and subject specific model generation. Int. J. Comput. Vis. 87(1–2), 156–169 (2010)CrossRefGoogle Scholar
  65. 65.
    Li, Q., Xu, S., Xia, D., Li, D.: A Novel 3D Convex Surface Reconstruction Method Based on Visual Hull. In: Pattern Recognition and Computer Vision, vol. 8004, p 800412 (2011)Google Scholar
  66. 66.
    Roshnara Nasrin, P.P., Jabbar, S.: Efficient 3D Visual Hull Reconstruction Based on Marching Cube Algorithm. In: International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), pp 1–6 (2015)Google Scholar
  67. 67.
    Mercier, B., Meneveaux, D., Fournier, A.: A framework for automatically recovering object shape, reflectance and light sources from calibrated images. Int. J. Comput. Vis. 73(1), 77–93 (2007)CrossRefGoogle Scholar
  68. 68.
    Lorensen, W.E., Cline, H.E.: Marching Cubes: a High Resolution 3D Surface Construction Algorithm. In: Proceedings of the 14Th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), vol. 21, no. 4, pp 163–169 (1987)Google Scholar
  69. 69.
    Lazebnik, S., Furukawa, Y., Ponce, J.: Projective visual hulls. Int. J. Comput. Vis. 74(2), 137–165 (2007)CrossRefGoogle Scholar
  70. 70.
    Tomasi, C., Kanade, T.: Shape and motion from image streams: a factorization method. Proc. Natl. Acad. Sci. 90(21), 9795–9802 (1993)CrossRefGoogle Scholar
  71. 71.
    Pollefeys, M., Vergauwen, M., Cornelis, K., Tops, J., Verbiest, F., Van Gool, L.: Structure and Motion from Image Sequences. In: Proceedings of the Conference on Optical 3D Measurement Techniques, pp 251–258 (2001)Google Scholar
  72. 72.
    Lhuillier, M., Quan, L.: A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 418–433 (2005)CrossRefGoogle Scholar
  73. 73.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. ACM Trans. Graph. 25(3), 835–846 (2006)CrossRefGoogle Scholar
  74. 74.
    Del Bue, A., Agapito, L.: Non-rigid stereo factorization. Int. J. Comput. Vis. 66(2), 193–207 (2006)CrossRefGoogle Scholar
  75. 75.
    Huang, Y., Tu, J., Huang, T.S.: A Factorization Method in Stereo Motion for Non-Rigid Objects. In: IEEE International Conference on Acoustics, Speech and Signal Processing, No. 1, pp 1065–1068 (2008)Google Scholar
  76. 76.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  77. 77.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  78. 78.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)CrossRefGoogle Scholar
  79. 79.
    Kalman, R.E.: A new approach to linear filtering and prediction problems 1. ASME Trans. J. Basic Eng. 82 (Series D), 35–45 (1960)CrossRefGoogle Scholar
  80. 80.
    Welch, G., Bishop, G.: An introduction to the Kalman filter. In Pract. 7(1), 1–16 (2006)Google Scholar
  81. 81.
    Ristic, B., Arulampalam, S., Gordon, N.: A Tutorial on Particle Filters. In: Beyond the Kalman Filter: Particle Filter for Tracking Applications, pp 35–62. Artech House, Boston (2004)Google Scholar
  82. 82.
    Sui, Y., Zhang, L.: Robust tracking via locally structured representation. Int. J. Comput. Vis. 119(2), 110–144 (2016)MathSciNetCrossRefGoogle Scholar
  83. 83.
    Gonzales, C., Dubuisson, S.: Combinatorial resampling particle filter: an effective and efficient method for articulated object tracking. Int. J. Comput. Vis. 112(3), 255–284 (2015)CrossRefGoogle Scholar
  84. 84.
    Kwolek, B., Krzeszowski, T., Gagalowicz, A., Wojciechowski, K., Josinski, H.: Real-Time Multi-View Human Motion Tracking Using Particle Swarm Optimization with Resampling. In: International Conference on Articulated Motion and Deformable Objects (AMDO), pp 92–101 (2012)Google Scholar
  85. 85.
    Zhang, X., Hu, W., Xie, N., Bao, H., Maybank, S.: A robust tracking system for low frame rate video. Int. J. Comput. Vis. 115(3), 279–304 (2015)MathSciNetCrossRefGoogle Scholar
  86. 86.
    Maung, T.H.H.: Real-time hand tracking and gesture recognition system using neural networks. World Acad. Sci. Eng. Technol. 50, 466–470 (2009)Google Scholar
  87. 87.
    Agarwal, A., Datla, S., Tyagi, B., Niyogi, R.: Novel design for real time path tracking with computer vision using neural networks. Int. J. Comput. Vis. Robot. 1(4), 380–391 (2010)CrossRefGoogle Scholar
  88. 88.
    Katz, S., Tal, A., Basri, R.: Direct visibility of point sets. ACM Trans. Graph. 26(3), 1–12 (2007)CrossRefGoogle Scholar
  89. 89.
    Möller, T., Trumbore, B.: Fast, minimum storage ray-triangle intersection. J. Graph. Tools 2(1), 21–28 (1997)CrossRefGoogle Scholar
  90. 90.
    Kim, W.S., Ansar, A.I., Steele, R.D., Steinke, R.C.: Performance Analysis and Validation of a Stereo Vision System. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp 1409–1416 (2005)Google Scholar
  91. 91.
    Blender Online Community: Blender - a 3D modelling and rendering package. Blender Institute, Amsterdam (2016)Google Scholar
  92. 92.
    Vedaldi, A., Fulkerson, B.: {VLFeat}- an Open and Portable Library of Computer Vision Algorithms. In: ACM International Conference on Multimedia (2010)Google Scholar
  93. 93.
    Bouguet, J.-Y.: Camera calibration toolbox for matlab (2004)Google Scholar
  94. 94.
    MacKay, M.D., Fenton, R.G., Benhabib, B.: Active Vision for Human Action Sensing. In: Technological Developments in Education and Automation, pp 397–402. Springer (2010)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of TorontoTorontoCanada

Personalised recommendations