A Novel Sensor Fault Detection in an Unmanned Quadrotor Based on Adaptive Neural Observer

  • Payam Aboutalebi
  • Alireza Abbaspour
  • Parisa Forouzannezhad
  • Arman Sargolzaei
Article
  • 98 Downloads

Abstract

Prompt detection and isolation of faults and failures in flight control systems are crucial to avoid negative impacts on human and environmental systems, and to the system itself. In this study, a new scheme based on a nonlinear dynamic model is designed for sensor fault detection and isolation in an unmanned aerial vehicle (UAV) system. In the proposed design, a neural network is used as an observer for faults in the UAV sensors. The weighting parameters of the neural network are updated by the Extended Kalman Filter (EKF). The designed fault detection (FD) system is applied to an unmanned quadrotor model, and the simulation results show that the proposed design is capable of the prompt detection of sensor faults.

Keywords

Malfunction Sensor Flight dynamic Nonlinear model Control Extended Kalman Filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heredia, G., Ollero, A.: Detection of sensor faults in small helicopter UAVs using observer/Kalman filter identification. Math. Probl. Eng. 2011 (2011)Google Scholar
  2. 2.
    Yin, S., Xiao, B., Ding, S.X., Zhou, D.: A review on recent development of spacecraft attitude fault tolerant control system. IEEE Trans. Ind. Electron. 63, 3311–3320 (2016)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Yang, J., Xu, Y., Jiang, S., Liu, X., Wang, Q.: Status self-validation of sensor arrays using gray forecasting model and bootstrap method. IEEE Trans. Instrum. Meas. 65, 1626–1640 (2016)CrossRefGoogle Scholar
  4. 4.
    Pourbabaee, B., Meskin, N., Khorasani, K.: Sensor fault detection, isolation, and identification using multiple-model-based hybrid Kalman filter for gas turbine engines. IEEE Trans. Control Syst. Technol. 24, 1184–1200 (2016)CrossRefGoogle Scholar
  5. 5.
    Li, X.-J., Yang, G.-H.: Fault detection for T–S fuzzy systems with unknown membership functions. IEEE Trans. Fuzzy Syst. 22, 139–152 (2014)CrossRefGoogle Scholar
  6. 6.
    Yang, G.-H., Wang, H.: Fault detection and isolation for a class of uncertain state-feedback fuzzy control systems. IEEE Trans. Fuzzy Syst. 23, 139–151 (2015)CrossRefGoogle Scholar
  7. 7.
    de Loza, A.F., Cieslak, J., Henry, D., Dávila, J., Zolghadri, A.: Sensor fault diagnosis using a non-homogeneous high-order sliding mode observer with application to a transport aircraft. IET Control Theory Appl. 9, 598–607 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fallaha, C.J., Saad, M., Kanaan, H.Y., Al-Haddad, K.: Sliding-mode robot control with exponential reaching law. IEEE Trans. Ind. Electron. 58, 600–610 (2011)CrossRefGoogle Scholar
  9. 9.
    Henry, D.: Fault diagnosis of microscope satellite thrusters using H-infinity/H_ filters. J. Guid. Control. Dyn. 31, 699–711 (2008)CrossRefGoogle Scholar
  10. 10.
    Freeman, P., Pandita, R., Srivastava, N., Balas, G.J.: Model-based and data-driven fault detection performance for a small UAV. IEEE/ASME Trans. Mechatron. 18, 1300–1309 (2013)CrossRefGoogle Scholar
  11. 11.
    He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. Hum. 46, 334–344 (2016)CrossRefGoogle Scholar
  12. 12.
    He, W., David, A.O., Yin, Z., Sun, C.: Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans. Syst. Man Cybern. Syst. Hum. 46, 759–770 (2016)CrossRefGoogle Scholar
  13. 13.
    He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46, 620–629 (2016)CrossRefGoogle Scholar
  14. 14.
    Talebi, H., Patel, R.: An intelligent fault detection and recovery scheme for reaction wheel actuator of satellite attitude control systems. In: 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, pp. 3282–3287 (2006)Google Scholar
  15. 15.
    Tao, G., Chen, S., Joshi, S.M.: An adaptive actuator failure compensation controller using output feedback. IEEE Trans. Autom. Control 47, 506–511 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Samy, I., Postlethwaite, I., Gu, D.-W.: Survey and application of sensor fault detection and isolation schemes. Control. Eng. Pract. 19, 658–674 (2011)CrossRefGoogle Scholar
  17. 17.
    Talebi, H.A., Khorasani, K., Tafazoli, S.: A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite’s attitude control subsystem. IEEE Trans. Neural Netw. 20, 45–60 (2009)CrossRefGoogle Scholar
  18. 18.
    Khorasgani, H.G., Menhaj, M.B., Talebi, H., Bakhtiari-Nejad, F.: Neural-network-based sensor fault detection & isolation for nonlinear hybrid systems. IFAC Proc. Vol. 45, 1029–1034 (2012)CrossRefGoogle Scholar
  19. 19.
    Wu, Q., Saif, M.: Neural adaptive observer based fault detection and identification for satellite attitude control systems. In: Proceedings of the 2005, American Control Conference 2005, pp. 1054–1059 (2005)Google Scholar
  20. 20.
    Hussain, S., Mokhtar, M., Howe, J.M.: Sensor failure detection, identification, and accommodation using fully connected cascade neural network. IEEE Trans. Ind. Electron. 62, 1683–1692 (2015)CrossRefGoogle Scholar
  21. 21.
    Chen, M., Shi, P., Lim, C.-C.: Adaptive neural fault-tolerant control of a 3-DOF model helicopter system. IEEE Trans. Syst. Man Cybern. Syst. Hum. 46, 260–270 (2016)CrossRefGoogle Scholar
  22. 22.
    Shen, Q., Jiang, B., Shi, P., Lim, C.-C.: Novel neural networks-based fault tolerant control scheme with fault alarm. IEEE Trans. Cybern. 44, 2190–2201 (2014)CrossRefGoogle Scholar
  23. 23.
    Abbaspour, A., Aboutalebi, P., Yen, K.K., Sargolzaei, A.: Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: application in UAV. ISA Trans. 67, 317–329 (2017)CrossRefGoogle Scholar
  24. 24.
    Abaspour, A., Sadati, S.H., Sadeghi, M.: Nonlinear optimized adaptive trajectory control of helicopter. Control Theory Technol. 13, 297–310 (2015)CrossRefMATHGoogle Scholar
  25. 25.
    Ljung, L., Soderstrom, T.: Theory and Practice of Recursive Identification. MIT Press, Cambridge (1983)MATHGoogle Scholar
  26. 26.
    Sadeghzadeh, I., Zhang, Y.: A review on fault-tolerant control for unmanned aerial vehicles (UAVs). Infotech@ Aerospace, St. Louis (2011)CrossRefGoogle Scholar
  27. 27.
    Wang, L., He, Y., Zhang, Z., He, C.: Trajectory tracking of quadrotor aerial robot using improved dynamic inversion method. Intell. Control. Autom. 4, 343 (2013)CrossRefGoogle Scholar
  28. 28.
    Quan, Q., Du, G.-X., Cai, K.-Y.: Proportional-integral stabilizing control of a class of MIMO systems subject to nonparametric uncertainties by additive-state-decomposition dynamic inversion design. IEEE/ASME Trans. Mechatron. 21, 1092–1101 (2016)CrossRefGoogle Scholar
  29. 29.
    Smeur, E.J., Chu, Q., de Croon, G.C.: Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles. J. Guid. Control. Dyn. 38, 450–461 (2015)Google Scholar
  30. 30.
    Reiner, J., Balas, G.J., Garrard, W.L.: Robust dynamic inversion for control of highly maneuverable aircraft. J. Guid. Control. Dyn. 18, 18–24 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Payam Aboutalebi
    • 1
  • Alireza Abbaspour
    • 2
  • Parisa Forouzannezhad
    • 2
  • Arman Sargolzaei
    • 3
  1. 1.Department of Electrical EngineeringShahrood University of TechnologyShahroodIran
  2. 2.Department of Electrical and Computer EngineeringFlorida International UniversityMiamiUSA
  3. 3.Department of Electrical EngineeringFlorida Polytechnic UniversityLakelandUSA

Personalised recommendations