Skip to main content

Advertisement

Log in

Multi-Target Motion Planning Amidst Obstacles for Autonomous Aerial and Ground Vehicles

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The motion planning problem of a single autonomous vehicle having a minimum turn radius constraint, visiting an ordered sequence of targets in an environment with polygonal obstacles, is addressed. Two types of vehicles are considered: aerial/ground vehicle - described by the Dubins/Reeds-Shepp vehicle models, respectively. The problem is posed in the form of a search tree by using the obstacles’ vertices, vehicle’s initial configuration, and the set of target points as nodes. The tree’s arcs are represented by the Dubins/Reed-Shepp paths without terminal angle constraint (relaxed paths) connecting two adjacent nodes. These relaxed paths - connecting an initial configuration and a destination, are calculated using a feedback algorithm. Due to the computational complexity of the problem a genetic algorithm is proposed. Additionally, two deterministic search algorithms are presented. A quick heuristic greedy algorithm which uses the visibility graph distances for estimating the remaining vehicle path and an exhaustive algorithm which provides optimal solution trajectories. The performance of the algorithms is demonstrated and compared through sample runs and a Monte Carlo study. Results confirm that the heuristic algorithm provides relatively good solution for a small radius turn vehicle, while the genetic algorithm offers a good trade-off between computational load and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Wang, H.: Approximation algorithms for curvature-constrained shortest paths. SIAM J. Comput. 30(6), 1739–1772 (2001). https://doi.org/10.1137/S0097539796307790

    Article  MathSciNet  MATH  Google Scholar 

  2. Akhil, G., Ratnoo, A., Ghose, D.: A modified dubins problem with partially restricted terminal conditions. In: Proceedings of the IEEE International Conference on Control Applications, pp 877–882. Hyderabad, India (2013), https://doi.org/10.1109/CCA.2013.6662861

  3. Backer, J., Kirkpatrick, D.: A complete approximation algorithm for shortest bounded-curvature paths. In: Proceedings of the 19th International Symposium on Algorithms and Computation, pp 628–643. Surfers Paradise, Australia (2008), https://doi.org/10.1007/978-3-540-92182-0_56

  4. Boissonnat, J.D., Bui, X.N.: Accessibility region for a car that only move forward along optimal paths. Research Report INRIA 2181. INRIA Sophia-Antipolis, France (1994)

  5. Chakravarthy, A., Ghose, D.: Obstacle avoidance in a dynamic environment: A collision cone approach. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 28(5), 562–574 (1998). https://doi.org/10.1109/3468.709600

    Article  Google Scholar 

  6. Cobano, J.A., Conde, R., Alejo, D., Ollero, A.: Path planning based on genetic algorithms and the monte-carlo method to avoid aerial vehicle collisions under uncertainties. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 4429–4434. Shanghai, China (2011)

  7. Desaulniers, G.: On shortest paths for a car-like robot maneuvering around obstacles. Robot. Autonom. Syst. 17, 139–148 (1996). https://doi.org/10.1016/0921-8890(96)80512-4

    Article  Google Scholar 

  8. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Amer. J. Math. 79, 497–516 (1957). https://doi.org/10.2307/2372560

    Article  MathSciNet  MATH  Google Scholar 

  9. Edison, E., Shima, T.: Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms. Comput. Oper. Res. 38(1), 340–356 (2011). https://doi.org/10.1016/j.cor.2010.06.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. 57(1), 65–100 (2010). https://doi.org/10.1007/s10846-009-9383-1

    Article  MATH  Google Scholar 

  11. Gottlieb, Y., Shima, T.: UAVs task and motion planning in the presence of obstacles and prioritized targets. Sensors 15(11), 29,734 (2015). https://doi.org/10.3390/s151129734. http://www.mdpi.com/1424-8220/15/11/29734

    Article  Google Scholar 

  12. Henrich, D.: Fast motion planning by parallel processing–a review. J. Intell. Robot. Syst. 20(1), 45–69 (1997). https://doi.org/10.1023/A:1007948727999

    Article  Google Scholar 

  13. Isaiah, P., Shima, T.: Motion planning algorithms for the dubins travelling salesperson problem. Automatica 53, 247–255 (2015). https://doi.org/10.1016/j.automatica.2014.12.041

    Article  MathSciNet  MATH  Google Scholar 

  14. Jacobs, P., Canny, J.: Planning smooth paths for mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 2–7. Scottsdale, Arizona (1989), https://doi.org/10.1007/978-1-4615-3176-0_8

  15. Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental sampling-based methods. In: Proceedings of the IEEE Conference on Decision and Control, pp 7681–7687. Atlanta, USA (2010)

  16. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011). https://doi.org/10.1177/0278364911406761

    Article  MATH  Google Scholar 

  17. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996). https://doi.org/10.1109/70.508439

    Article  Google Scholar 

  18. Laumond, J.P., Jacobs, P., Taix, M., Murray, R.: A motion planner for non-holonomic mobile robot. IEEE Trans. Robot. Autom. 10(5), 577–593 (1994). https://doi.org/10.1109/70.326564

    Article  Google Scholar 

  19. LaValle, S., Kuffner, J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001). https://doi.org/10.1177/02783640122067453

    Article  Google Scholar 

  20. LaValle, S.M.: Robot motion planning: A game-theoretic foundation. Algorithmica 26(3–4), 430–465 (2000). https://doi.org/10.1007/s004539910020

    Article  MathSciNet  MATH  Google Scholar 

  21. LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: progress and prospects. In: Donald, BR, Lynch, K M, Rus, D (eds.) Algorithmic and Computational Robotics: New Directions, pp 293–308. A K Peters, Wellesley (2001)

  22. Le Ny, J., Frazzoli, E., Feron, E.: The curvature-constrained traveling salesman problem for high point densities. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp 5985–5990. New Orleans, Louisiana (2007), https://doi.org/10.1109/CDC.2007.4434503

  23. Lee, J.H., Cheong, O., Kwon, W.C., Shin, S.Y., Chwa, K.Y.: Approximation of curvature-constrained shortest paths through a sequence of points. In: Paterson, M S (ed.) Algorithms - ESA 2000: 8th Annual European Symposium Saarbrücken, Germany, September 5–8 2000 Proceedings, pp 314–325. Springer, Berlin (2000), https://doi.org/10.1007/3-540-45253-2_29

  24. Lee, T.L., Wu, C.J.: Fuzzy motion planning of mobile robots in unknown environments. J. Intell. Robot. Syst. 37(2), 177–191 (2003). https://doi.org/10.1023/A:1024145608826

    Article  Google Scholar 

  25. Ma, X., Castanon, D.A.: Receding horizon planning for Dubins traveling salesman problems. In: Proceedings of the IEEE Conference on Decision and Control, pp 5453–5458. CA, San Diego (2006)), https://doi.org/10.1109/CDC.2006.376928

  26. Maza, I., Kondak, K., Bernard, M., Ollero, A.: Multi-UAV cooperation and control for load transportation and deployment. J. Intell. Robot. Syst. 57(1-4), 417–449 (2010). https://doi.org/10.1007/s10846-009-9352-8

    Article  MATH  Google Scholar 

  27. Oberlin, P., Rathinam, S., Darbha, S.: A transformation for a heterogeneous, multiple depot, multiple traveling salesman problem. In: Proceedings of the 2009 American Control Conference, pp 1292–1297. Missouri, St. Louis (2009), https://doi.org/10.1109/ACC.2009.5160666

  28. Park, J.W., Oh, H.D., Tahk, M.J.: UAV collision avoidance based on geometric approach. In: Proceedings of the SICE Annual Conference 2008, pp 2122–2126. Chofu, Tokyo (2008), https://doi.org/10.1109/SICE.2008.4655013

  29. Rasmussen, S.J., Shima, T.: Tree search algorithm for assigning cooperating UAVs to multiple tasks. Int. J. Robust Nonlinear Control 18(2), 135–153 (2008). https://doi.org/10.1002/rnc.1257

    Article  MathSciNet  MATH  Google Scholar 

  30. Sengupta, R.R.S., Darbha, S.: A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Trans. Autom. Sci. Eng. 4. https://doi.org/10.1109/TASE.2006.872110 (2007)

  31. Ratnoo, A., Sujit, P., Kothari, M.: Adaptive optimal path following for high wind flights. In: Proceedings of the 18th IFAC World Congress, vol. 2. Italy, Milano (2011)

  32. Ratnoo, A., Hayoun, S.Y., Granot, A., Shima, T.: Path following using trajectory shaping guidance. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference. Boston, Massachusetts (2013). https://doi.org/10.2514/6.2013-5233

  33. Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145(2), 367–393 (1990). https://doi.org/10.2140/pjm.1990.145.367

    Article  MathSciNet  Google Scholar 

  34. Reif, J., Wang, H.: The complexity of the two dimensional curvature-constrained shortest-path problem. In: Proceedings of the third Workshop on the Algorithmic Foundations of Robotics on Robotics: the Algorithmic Perspective, pp 49–57. MA, Natick (1998)

  35. Savla, K., Frazzoli, E., Bullo, F.: On the point-to-point and traveling salesperson problems for dubins vehicle. In: Proceedings of the Americal Control Conference, pp 786–791. Portland, USA (2005), https://doi.org/10.1109/ACC.2005.1470055

  36. Shaferman, V., Shima, T.: Unmanned aerial vehicles cooperative tracking of moving ground target in urban environments. AIAA J. Guid. Control Dynam. 31(5), 1360–1371 (2008). https://doi.org/10.2514/1.33721

    Article  Google Scholar 

  37. Shanmugavel, M., Tsourdos, A., White, B., Zbikowski, R.: Co-operative path planning of multiple UAVs using dubins paths with clothoid arcs. Control Eng. Pract. 18(9), 1084–1092 (2010). https://doi.org/10.1016/j.conengprac.2009.02.010

    Article  Google Scholar 

  38. Soueres, P., Fourquet, J.Y., Laumond, J.P.: Set of reachable positions for a car. IEEE Trans. Autom. Control 39, 1626–1630 (1994). https://doi.org/10.1109/9.310037

    Article  MathSciNet  MATH  Google Scholar 

  39. Sujit, P., Beard, R.: Multiple UAV path planning using anytime algorithms. In: Proceedings of the 2009 American Control Conference, pp 2978–2983. Missouri, St. Louis (2009), https://doi.org/10.1109/ACC.2009.5160222

  40. Sujit, P., Sinha, A., Ghose, D.: Multiple UAV task allocation using negotiation. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp 471–478. Hakodate, Japan (2006), https://doi.org/10.1145/1160633.1160719

  41. Sussmann, H., Tang, G.: Shortest paths for the reeds-shepp car: A worked out example of the use of geometric techniques in nonlinear optimal control. Tech. Rep. SYNCON 91-10, Department of Mathematics. Rutgers University, Piscataway (1991)

  42. Tang, Z., Ozguner, U.: Motion planning for multitarget surveillance with mobile sensor agents. IEEE Trans. Robot. 21, 898–908 (2005). https://doi.org/10.1109/TRO.2005.847567

    Article  Google Scholar 

  43. Wong, H., Kapila, V., Vaidyanathan, R.: UAV optimal path planning using C-C-C class paths for target touring. In: Proceedings of the IEEE Conference on Decision and Control, pp 1105– 1110. Atlantis, Bahamas (2004), https://doi.org/10.1109/CDC.2004.1428840

  44. Yang, G., Kapila, V.: Optimal path planning for unmanned air vehicles with kinematic and tactical constraints. In: Proceedings of the IEEE Conference on Decision and Control, pp 1301–1306. Las Vegas, USA (2002), https://doi.org/10.1109/CDC.2002.1184695

Download references

Acknowledgements

The research was partially supported by Israel Aerospace Industries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gottlieb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottlieb, Y., Manathara, J.G. & Shima, T. Multi-Target Motion Planning Amidst Obstacles for Autonomous Aerial and Ground Vehicles. J Intell Robot Syst 90, 515–536 (2018). https://doi.org/10.1007/s10846-017-0684-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0684-5

Keywords

Navigation