The Performance Indices Optimization of a Symmetrical Fully Spherical Parallel Mechanism for Dimensional Synthesis

  • Javad Enferadi
  • Reza Nikrooz


The 3(UPS)-S fully spherical parallel manipulator is the most famous fully spherical parallel robot. Therefore, dimensional synthesis of the manipulator to optimize kinematics and dynamic performance indices is very important. In this paper, we proposed a new kinematics index that is called global workspace conditioning index (GWCI). This index is a suitable criteria to compare workspace of the spherical parallel manipulators. Using this index, and other performance indices such as; Global Conditioning Index (GCI), Global Gradient Index (GGI) and Dynamic Dexterity Index (DDI), we optimize dimensions of the manipulator based on single and multi-objective optimizations. Two dimensionless design parameters are advised to obtain an optimal solution. The manipulator is optimized with regard to the joints constraint and range of motion actuators as functions of the design parameters. For this purpose, we elaborate kinematics analyses and also obtain the mass matrix of the manipulator using its kinetic energy. Next, single-objective optimizations based on Genetic Algorithm (GA) and Pattern Search (PS) are presented. The comparison between GA and PS in the single-objective optimization shows that the accuracy of both methods is rather equal, but in elapsed time PS is better than GA. Finally, multi-objective evolutionary algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the true optimal solutions and Pareto fronts. The obtained solution will be a set of optimal geometric parameters to adjust the dynamic and the kinematic performance.


Dimensional synthesis Global workspace conditioning index Performance indices Genetic algorithm Pattern search Non-dominated sorting genetic algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hunt, K. H.: Structural kinematics of in-parallel-actuated robot-arms. Trans. ASME J. Mech. Trans. Autom. Des. 105, 705 (1983)CrossRefGoogle Scholar
  2. 2.
    Merlet, J. P.: Force feedback control of parallel manipulators. In: IEEE Int. Conf. on Robotics and Automation, pp. 1484–1489. Philadelphia, PA, (1988)
  3. 3.
    Sklar, M., Tesar, D.: Dynamic analysis of hybrid serial manipulator systems contain parallel modules. ASME J. Dynam. Meas. Contr. 110, 109–115 (1988)CrossRefGoogle Scholar
  4. 4.
    Miller, K.: Optimal design and modeling of spatial parallel manipulators. Int. J. Robot. Res. 23(2), 127–140 (2004)CrossRefGoogle Scholar
  5. 5.
    Zhang, Y., Yao, Y.: inematic optimal design of 6-UPS parallel manipulator. In: Proceedings 2006 IEEE International Conference on Mechatronics and Automation, pp. 23412345, Luoyang, Henan, (2006)
  6. 6.
    Kurtz, R., Hayward, V.: Multiple-goal kinematic optimization of parallel spherical mechanism with actuator redundancy. IEEE Trans. Robot. Autom. 8(5), 644–651 (1992)CrossRefGoogle Scholar
  7. 7.
    Kelaiaia, R., Company, O, Zaati, A: Multi-objective optimization of parallel kinematic mechanisms by the genetic algorithms. Robotica 30(5), 783–797 (2012)CrossRefGoogle Scholar
  8. 8.
    Song, Y., Gao, H., Sun, T., Dong, G., Lian, B., Qi, Y.: Kinematic analysis and optimal design of a novel 1T3R parallel manipulator with an articulated travelling plate. J. Robot. Comput.-Integrated Manuf. 30(5), 508–516 (2014)CrossRefGoogle Scholar
  9. 9.
    Song, Y., Lian, B., Sun, T., Dong, G., Qi, Y., Gao, H.: A novel five-degree-of-freedom parallel manipulator and its kinematic optimization. J. Mech. Robot. 6(4), 410081–410089 (2014)CrossRefGoogle Scholar
  10. 10.
    Zhao, Y.: Dimensional synthesis of a three translational degrees of freedom parallel robot while considering kinematic anisotropic property. J. Robot. Comput.-Integr. Manuf. 29(1), 169–179 (2013)CrossRefGoogle Scholar
  11. 11.
    Cirilloa, A., Cirilloa, P., De Mariaa, G., Marinob, A., Natalea, C., Pirozzia, S.: Optimal custom design of both symmetric and unsymmetrical hexapod robots for aeronautics applications. J. Robot. Comput.-Integr. Manuf. 44, 1–16 (2017)CrossRefGoogle Scholar
  12. 12.
    Strang, G.: Linear Algebra and its Application. Academic Press, New York (1976)zbMATHGoogle Scholar
  13. 13.
    Salisbury, J. K., Graig, J.: Articulated hands: Force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982)CrossRefGoogle Scholar
  14. 14.
    Gosselin, C. M., Angeles, J.: A global performance index for the kinematic optimization of robotic manipulators. J. Mech. Des. 113(3), 220–226 (1991)CrossRefGoogle Scholar
  15. 15.
    Gosselin, C. M., Lavoie, E.: On the kinematic design of spherical three-degree-of-freedom parallel manipulators. Int. J. Robot. Res. 12, 394–402 (1993)CrossRefGoogle Scholar
  16. 16.
    Huang, T., Gosselin, C. M., Whitehouse, D. J., Chetwynd, D. G.: Analytical approach for optimal design of a type of spherical parallel manipulator using dexterous performance indices. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 217, 447–456 (2003)CrossRefGoogle Scholar
  17. 17.
    Lee, S. H., Lee, J. H., Yi, B. J., Kim, S. H., Kwak, Y. K.: Optimization and experimental verification for the antagonistic stiffness in redundantly actuated mechanisms: a five-bar example. Mechatronics 15(2), 213–238 (2005)CrossRefGoogle Scholar
  18. 18.
    Asada, H.: A geometrical representation of manipulator dynamics and its application to arm design. ASME J. Dyn. Sys. Meas. Control 105, 131–135 (1983)CrossRefzbMATHGoogle Scholar
  19. 19.
    Gosselin, C., Angeles, J.: A Global performance index for the kinematic optimization of robotic manipulators. J. Mech.Des. 113, 220–226 (1991)CrossRefGoogle Scholar
  20. 20.
    Wu, J., Jinsong, W., Tiemin, L., Wang, L., Guan, L.: Dynamic dexterity of a planar 2-DOF parallel manipulator in a hybrid machine tool. Robotica 26, 93–98 (2008)CrossRefGoogle Scholar
  21. 21.
    Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  22. 22.
    Michalewicz, Z.: Genetic Algorithms and Data Structures Evolution Programs. Springer, Berlin (1994). ISBN: 3-540-580090-5 Michalewicz, Z.: .Google Scholar
  23. 23.
    Sumait, A. l., Othman, A. l., Sykulski, J. K.: Application of pattern search method to power system valve-point economic load dispatch. Electr. Power Energy Syst. 29, 720–730 (2007)CrossRefGoogle Scholar
  24. 24.
    Rechenberg, I.: Evolutionsstrategie - Optimierung Technischer Systeme Nach Prinzipien Der Biologischen Evolution. Friedrich Frommann, Verlag (1973)Google Scholar
  25. 25.
    Holland, H. J.: An Introductory Analysis with Application to Biology Control and Artificial Intelligence. The University of Michigan Press, Ann Arbor (1975)zbMATHGoogle Scholar
  26. 26.
    Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Inc., New York (2001). ISBN:047187339XzbMATHGoogle Scholar
  27. 27.
    Enferadi, J., Akbarzadeh Tootoonchi, A.: Accuracy and stiffness analysis of a 3-RRP spherical parallel manipulator. Robotica 29, 193–209 (2011)CrossRefzbMATHGoogle Scholar
  28. 28.
    Andersson, J.: A survey of multiobjective optimization in engineering design, Technical Report No. LiTH-IKP-R-1097, Department of Mechanical Engineering Linköping University, Linköping, Sweden (2000)Google Scholar
  29. 29.
    Deb, K., Agarwal, S, Meyarivan, T.: A Fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations