Skip to main content
Log in

Topology Synthesis and Optimal Design of an Adaptive Compliant Gripper to Maximize Output Displacement

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents the optimal design process of an innovative adaptive compliant gripper (ACG) for fast handling of objects with size and shape variations. An efficient soft-add topology optimization algorithm is developed to synthesize the optimal topology of the ACG. Unlike traditional hard-kill and soft-kill methods, the elements are equivalent to be numerically added into the analysis domain through the proposed soft-add scheme. A size optimization method incorporating Augmented Lagrange Multiplier (ALM) method, Simplex method, and nonlinear finite element analysis with the objective to maximize geometric advantage (which is defined as the ratio of output displacement to input displacement) of the analyzed compliant mechanism is carried out to optimize the design. The dynamic performance and contact behavior of the ACG is analyzed by using explicit dynamic finite element analysis. Three designs are prototyped using silicon rubber material. Experimental tests are performed, and the results agree well with the simulation models. The outcomes of this study provide numerical methods for design and analysis of compliant mechanisms with better computational efficiency, as well as to develop an innovative adaptive compliant gripper for fast grasping of unknown objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie, Y.M., Steven, G.P.: Evolutionary Structural Optimization. Springer (1997)

  2. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  3. Huang, X., Xie, Y.M.: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. Wiley (2010)

  4. Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bidirectional evolutionary structural optimization method. Finite Elem. Anal. Des. 43, 1039–1049 (2007)

    Article  Google Scholar 

  5. Huang, X., Xie, Y.M.: A further review of ESO type methods for topology optimization. Struct. Multidiscip. Optim. 41(5), 671–683 (2010)

    Article  Google Scholar 

  6. Li, Y., Huang, X., Xie, Y.M., Zhou, S.: Bi-directional evolutionary structural optimization for design of compliant mechanisms. Key Eng. Mater. 535-536, 373–376 (2013)

    Article  Google Scholar 

  7. Alonso, C., Querin, O.M., Ansola, R.: A sequential element rejection and admission (SERA) method for compliant mechanisms design. Struct. Multidiscip. Optim. 47(6), 795–807 (2013)

    Article  Google Scholar 

  8. Alonso, C., Ansola, R., Querin, O.M.: Topology synthesis of multi-material compliant mechanisms with a sequential element rejection and admission method. Finite Elem. Anal. Des. 85, 11–19 (2014)

    Article  Google Scholar 

  9. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization 16(1), 68–75 (1998)

    Article  Google Scholar 

  10. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33, 401–424 (2007)

    Article  Google Scholar 

  11. Ansola, R., Veguería, E., Maturana, A., Canales, J.: 3D compliant mechanisms synthesis by a finite element addition procedure. Finite Elem. Anal. Des. 46(9), 760–769 (2010)

    Article  Google Scholar 

  12. Wang, M.Y.: Mechanical and geometric advantages in compliant mechanism optimization. Front. Mech. Eng. China 4, 229–241 (2009)

    Article  Google Scholar 

  13. Zhou, H., Killekar, P.P.: The modified quadrilateral discretization model for the topology optimization of compliant mechanisms. ASME J. Mech. Des. 133(11), 111007–111007-9 (2011)

    Article  Google Scholar 

  14. Zhu, B., Zhang, X., Fatikow, S.: Level set-based topology optimization of hinge-free compliant mechanisms using a two-step elastic modeling method. ASME J. Mech. Des. 136(3), 031007 (2014)

    Article  Google Scholar 

  15. Cao, L., Dolovich, A.T., Zhang, W.: Hybrid compliant mechanism design using a mixed mesh of flexure hinge elements and beam elements through topology optimization. ASME J. Mech. Des. 137(9), 092303 (2015)

    Article  Google Scholar 

  16. Rahmatalla, S., Swan, C.C.: Sparse monolithic compliant mechanisms using continuum structural topology optimization. Int. J. Numer. Methods Eng. 62(12), 1579–1605 (2005)

    Article  MATH  Google Scholar 

  17. Pedersen, C.B.W., Buhl, T., Sigmund, O.: Topology synthesis of large-displacement compliant mechanisms. Int. J. Numer. Methods Eng. 50(12), 2683–2705 (2001)

    Article  MATH  Google Scholar 

  18. Zhou, H.: Topology optimization of compliant mechanisms using hybrid discretization model. ASME J. Mech. Des. 132(11), 111003–111003-8 (2010)

    Article  Google Scholar 

  19. Liu, C.-H., Huang, G.-F.: A topology optimization method with constant volume fraction during iterations for design of compliant mechanisms. ASME J. Mech. Robot. 8(4), 044505 (2016)

    Article  Google Scholar 

  20. Jin, M., Zhang, X.: A new topology optimization method for planar compliant parallel mechanisms. Mech. Mach. Theory 95, 42–58 (2016)

    Article  Google Scholar 

  21. Pedersen, C.B., Fleck, N.A., Ananthasuresh, G.K.: Design of a compliant mechanism to modify an actuator characteristic to deliver a constant output force. ASME J. Mech. Des. 128(5), 1101–1112 (2006)

    Article  Google Scholar 

  22. Sigmund, O.: Design of multiphysics actuators using topology optimization – Part I: one-material structures. Comput. Methods Appl. Mech. Eng. 190(49–50), 6577–6604 (2001)

    Article  MATH  Google Scholar 

  23. Sigmund, O.: Design of multiphysics actuators using topology optimization – Part II: two-material structures. Comput. Methods Appl. Mech. Eng. 190(49–50), 6605–6627 (2001)

    Article  MATH  Google Scholar 

  24. Yoon, G.H.: Topological layout design of electro-fluid-thermal-compliant actuator. Comput. Methods Appl. Mech. Eng. 209–212, 28–44 (2012)

    Article  Google Scholar 

  25. Gonçalves, J.F., De Leon, D.M., Perondi, E.A.: Topology optimization of embedded piezoelectric actuators considering control spillover effects. J. Sound Vib. 388, 20–41 (2017)

    Article  Google Scholar 

  26. Frecker, M.I., Ananthasuresh, G.K., Nishiwaki, S., Kikuchi, N., Kota, S.: Topological synthesis of compliant mechanisms using multi-criteria optimization. ASME J. Mech. Des. 119(2), 238–245 (1997)

    Article  Google Scholar 

  27. Lu, K., Kota, S.: Topology and dimensional synthesis of compliant mechanisms using discrete optimization. ASME J. Mech. Des. 128(5), 1080–1091 (2006)

    Article  Google Scholar 

  28. Petković, D., Pavlović, N.D., Shamshirband, S., Badrul Anuar, N.: Development of a new type of passively adaptive compliant gripper. Industrial Robot: An International Journal 40, 610–623 (2013)

    Article  Google Scholar 

  29. Birglen, L., Laliberté, T., Gosselin, C.: Underactuated Robotic Hands. Springer (2008)

  30. Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., Buehler, M., Kohout, R., Howe, R.D., Dollar, A.M.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33(5), 736–752 (2014)

    Article  Google Scholar 

  31. Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35(1-3), 161–185 (2016)

    Article  Google Scholar 

  32. She, Y., Chen, J., Shi, H., Su, H.-J.: Modeling and validation of a novel bending actuator for soft robotics applications. Soft Rob. 3(2), 71–81 (2016)

    Article  Google Scholar 

  33. Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M.: A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Rob. 2(3), 107–116 (2015)

    Article  Google Scholar 

  34. Montambault, S., Gosselin, C.M.: Analysis of underactuated mechanical grippers. ASME J. Mech. Des. 123, 367–374 (2001)

    Article  Google Scholar 

  35. Doria, M., Birglen, L.: Design of an underactuated compliant gripper for surgery using nitinol. ASME J. Med. Devices 3(1), 011007–1-7 (2009)

    Article  Google Scholar 

  36. Petković, D., Shamshirband, S., Anuar, N.B., Sabri, A.Q.M., Rahman, Z.B.A., Pavlović, N.D.: Input displacement neuro-fuzzy control and object recognition by compliant multi-fingered passively adaptive robotic gripper. J. Intell. Robot. Syst. 82, 177–187 (2016)

    Article  Google Scholar 

  37. Chen, D., Liu, Z., von Wichert, G.: Uncertainty-aware arm-base coordinated grasping strategies for mobile manipulation. J. Intell. Robot. Syst. 80(Supplement 1), 205–223 (2015)

    Article  Google Scholar 

  38. Chua, P.Y., Ilschner, T., Caldwell, D.G.: Robotic manipulation of food products - a review. Industrial Robot: An International Journal 30(4), 345–354 (2003)

    Article  Google Scholar 

  39. Pettersson, A., Davis, S., Gray, J.O., Dodd, T.J., Ohlsson, T.: Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J. Food Eng. 98(3), 332–338 (2010)

    Article  Google Scholar 

  40. Pettersson, A., Ohlsson, T., Davis, S., Gray, J.O., Dodd, T.J.: A hygienically designed force gripper for flexible handling of variable and easily damaged natural food products. Innovative Food Sci. Emerg. Technol. 12(3), 344–351 (2011)

    Article  Google Scholar 

  41. Lee, K.-M.: Design criteria for developing an automated live-bird transfer system. IEEE Trans. Robot. Autom. 17(4), 483–490 (2001)

    Article  Google Scholar 

  42. Liu, C.-H., Lee, K.-M.: Dynamic modeling of damping effects in highly damped compliant fingers for applications involving contacts. ASME J. Dyn. Syst. Meas. Control. 134, 011005–1~9 (2012)

    Article  Google Scholar 

  43. Lee, K.-M., Liu, C.-H.: Explicit dynamic finite element analysis of an automated grasping process using highly damped compliant fingers. Comput. Math. Appl. 64(5), 965–977 (2012)

    Article  Google Scholar 

  44. Rao, S.S.: Engineering Optimization: Theory and Practice, 4th edn. Wiley (2009)

  45. Liu, C.-H., Chen, W., Su, W., Sun, C.-N.: Numerical and experimental analysis of the automated demolding process for PDMS microfluidic devices with high-aspect ratio micropillars. Int. J. Adv. Manuf. Technol. 80(1), 401–409 (2015)

    Article  Google Scholar 

  46. Liu, C.-H., Huang, Y.-C., Chiu, C.-H., Lai, Y.-C., Pai, T.-Y.: Design and analysis of automotive bumper covers in transient loading conditions. Key Eng. Mater. 715, 174–179 (2016)

    Article  Google Scholar 

  47. Liu, C.-H., Lai, Y.-C., Chiu, C.-H., Lin, M.-H.: Interior head impact analysis of automotive instrument panel for unrestrained front seat passengers. Key Eng. Mater. 715, 186–191 (2016)

    Article  Google Scholar 

  48. Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21, 120–127 (2001)

    Article  Google Scholar 

  49. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O.: Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 43(1), 1–16 (2011)

    Article  MATH  Google Scholar 

  50. Sigmund, O.: On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25(4), 493–524 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the grants: MOST 103-2218-E-006-012, and MOST 105-2221-E-006-082 from the Ministry of Science and Technology of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hsing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CH., Huang, GF., Chiu, CH. et al. Topology Synthesis and Optimal Design of an Adaptive Compliant Gripper to Maximize Output Displacement. J Intell Robot Syst 90, 287–304 (2018). https://doi.org/10.1007/s10846-017-0671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0671-x

Keywords

Navigation