Advertisement

Online Boundary Estimation in Partially Observable Environments Using a UAV

  • Abdullah Al Redwan Newaz
  • Sungmoon Jeong
  • Nak Young Chong
Article
  • 103 Downloads

Abstract

Environmental boundary estimation is the process of bounding the region(s) where the measurement of all locations exceeds a certain threshold value. In this paper, we develop a framework for environmental boundary tracking and estimation in partially observable environments which are processed in an online manner. Dedicated sensors mounted on the vehicle are considered to be capable of on-the-spot field intensity measurements. Focusing on the limited resources of Unmanned Aerial Vehicles (UAVs), it is important to track an unknown boundary in a fast manner. Therefore, we present a motion planning strategy that enables a single UAV to estimate the boundary of a given target area while minimizing the exploration cost. To do so, we improve the conventional position controller based framework by integrating a noise canceling filter and a novel adaptive crossing angle correction scheme. The effectiveness of the proposed algorithm is demonstrated in three different simulated environments. We also analyze the performance of framework subject to various conditions.

Keywords

Environment monitoring UAV Boundary tracking Online estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Industrial Convergence Core Technology Development Program (No. 10063172) funded by MOTIE, Korea.

References

  1. 1.
    Environmental boundary tracking, vehicles, estimation using multiple autonomous. Proceedings of the IEEE Conference on Decision and Control pp 4918–4923 (2007)Google Scholar
  2. 2.
    Baronov, D., Baillieul, J.: Reactive exploration through following isolines in a potential field. pp. 2141–2146 IEEE (2007)Google Scholar
  3. 3.
    Casbeer, D.W., Kingston, D.B., Beard, R.W., McLain, T.W.: Cooperative forest fire surveillance using a team of small unmanned air vehicles. Int. J. Systems Science 37, 351–360 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fahad, M., Saul, N., Guo, Y., Bingham, B.: Robotic Simulation of Dynamic Plume Tracking by Unmanned Surface Vessels. In: IEEE International Conference on Robotics and Automation, pp 2654–2659 (2015)Google Scholar
  5. 5.
    Gokaraju, B., Durbha, S.S., King, R.L., Younan, N.H.: Sensor Web and Data Mining Approaches for Harmful Algal Bloom Detection and Monitoring in the Gulf of Mexico Region. In: IEEE International Geoscience & Remote Sensing Symposium, pp 789–792 (2009)Google Scholar
  6. 6.
    Gotovos, A., Casati, N., Hitz, G., Krause, A.: Active Learning for Level Set Estimation. In: Proceedings of the 23Rd International Joint Conference on Artificial Intelligence. IJCAI / AAAI, pp 1344–1350 (2013)Google Scholar
  7. 7.
    Hsieh, M.y.A.: Stabilization of multiple robots on stable orbits via local sensing stabilization of multiple robots on stable orbits via local sensing (April) (2007)Google Scholar
  8. 8.
    Joshi, A., Ashley, T., Huang, Y.R., Bertozzi, A.L.: Experimental Validation of Cooperative Environmental Boundary Tracking with On-Board Sensors. In: 2009 American Control Conference. IEEE, pp 2630–2635 (2009)Google Scholar
  9. 9.
    Kemp, M., Bertozzi, A., Marthaler, D.: Multi-Uuv Perimeter Surveillance. In: Autonomous Underwater Vehicles. IEEE, pp 102–107 (2004)Google Scholar
  10. 10.
    Kurvinen, K., Smolander, P., Pöllänen, R., Kuukankorpi, S., Kettunen, M., Lyytinen, J.: Design of a radiation surveillance unit for an unmanned aerial vehicle. J. Environ. Radioact. 81(1), 1–10 (2005)CrossRefGoogle Scholar
  11. 11.
    Li, S., Guo, Y., Bingham, B.: Multi-Robot Cooperative Control for Monitoring and Tracking Dynamic Plumes. In: IEEE International Conference on Robotics and Automation, pp 67–73 (2014)Google Scholar
  12. 12.
    Marthaler, D., Bertozzi, A.L.: Tracking environmental level sets with autonomous vehicles. J. Electrochem. Soc. 129, 2865 (2003)Google Scholar
  13. 13.
    Matveev, A.S., Hoy, M.C., Ovchinnikov, K., Anisimov, A., Savkin, A.V.: Robot navigation for monitoring unsteady environmental boundaries without field gradient estimation. Automatica 62, 227–235 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Matveev, A.S., Teimoori, H., Savkin, A.V.: Method for tracking of environmental level sets by a unicycle-like vehicle. Automatica 48, 2252–2261 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    McClure, D.E., Vitale, R.A.: Polygonal approximation of plane convex bodies. J. Math. Anal. Appl. 51, 326–358 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Newaz, A.A.R., Jeong, S., Lee, H., Ryu, H., Chong, N.Y.: Uav-based multiple source localization and contour mapping of radiation fields. Robot. Auton. Syst. 85, 12–25 (2016)CrossRefGoogle Scholar
  17. 17.
    Newaz, A.A.R., Jeong, S., Lee, H., Ryu, H., Chong, N.Y., Mason, M.T.: Fast radation mapping and multiple source localization using topographic contour map and incremental density estimation. In: IEEE International Conference on Robotics and Automation pp. 1515–1521Google Scholar
  18. 18.
    Salda, D., Assunc R.: Predicting Environmental Boundary Behaviors with a Mobile Robot (2016)Google Scholar
  19. 19.
    Soltero, D.E., Schwager, M., Rus, D.: Decentralized path planning for coverage tasks using gradient descent adaptive control. Int. J. Robot. Res. 33, 401–425 (2014)CrossRefGoogle Scholar
  20. 20.
    Sun, T., Pei, H., Pan, Y., Zhang, C.: Robust adaptive neural network control for environmental boundary tracking by mobile robots. Int. J. Robust Nonlinear Control 23, 123–136 (2013)CrossRefzbMATHGoogle Scholar
  21. 21.
    Susca, S., Bullo, F., Martinez, S.: Monitoring environmental boundaries with a robotic sensor network. IEEE Trans. Control Syst. Technol. 16, 288–296 (2008)CrossRefGoogle Scholar
  22. 22.
    Towler, J., Krawiec, B., Kochersberger, K.: Terrain and radiation mapping in post-disaster environments using an autonomous helicopter. Remote Sens. 4, 1995–2015 (2012)CrossRefGoogle Scholar
  23. 23.
    Wang, Z., Wu, J., Yang, J., Lin, H.: Optimal Energy Efficient Level Set Estimation of Spatially-Temporally Correlated Random Fields. In: International Conference on Communications. IEEE, pp 1–6 (2016)Google Scholar
  24. 24.
    White, B., Tsourdos, A., Ashokoraj, I., Subchan, S., Zbikowski, R.: Contaminant Cloud Boundary Monitoring Using Uav Sensor Swarms. AIAA Journal of Guidance, Control, and Dynamics (2005)Google Scholar
  25. 25.
    Willett, R., Nowak, R.: Minimax optimal level set estimation. IEEE Trans. Image Process. 16(12), 2965–2979 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Abdullah Al Redwan Newaz
    • 1
  • Sungmoon Jeong
    • 1
  • Nak Young Chong
    • 1
  1. 1.School of Information ScienceJapan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations