Skip to main content
Log in

Multi-robot Deployment using Topological Maps

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper proposes an efficient and distributed deployment strategy to optimally distribute teams of robots in environments that can be represented by topological maps. Among the several applications of our solution are sensing and coverage of large corridor-based buildings, such as hospitals and schools, and the optimal placement of service vehicles in the streets of a big city. The representation of the environment as a topological map transforms the original two or three-dimensional problem into a one-dimensional, simplified problem, thus reducing the computational cost of the solution. Moreover, each robot can reach its final position by simply following a sequence of intuitive, human-like commands, without the need for global metric localization, which also simplifies robot control. Besides presenting convergence proofs for our method, the paper also presents simulated and real world experiments that illustrate and validate our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araujo, A.R., Caminhas, D.D., Pereira, G.A.S.: An architecture for navigation of service robots in human-populated office-like environments. In: 11th IFAC Symposium on Robot Control SYROCO 2015, vol. 48, pp 189–194 (2015)

  2. Bhattacharya, S., Michael, N., Kumar, V.: Distributed coverage and exploration in unknown non-convex environments. Distributed Autonomous Robotic Systems, Springer Tracts in Advanced Robotics 83, 61–75 (2013)

    Article  Google Scholar 

  3. Bhattacharya, S., Ghrist, R., Kumar, V.: Multi-robot coverage and exploration on riemannian manifolds with boundaries. Int. J. Robot. Res. 33(1), 113–137 (2014)

    Article  Google Scholar 

  4. Breitenmoser, A., Schwager, M., Metzger, J.C., Siegwart, R., Rus, D.: Voronoi coverage of non-convex environments with a group of networked robots. In: Proceedings of The IEEE International Conference on Robotics and Automation (ICRA), pp 4982–4989 (2010)

  5. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathematics Series, Princeton University Press (2009)

  6. Caicedo-Nunez, C., Zefran, M.: Performing coverage on nonconvex domains. In: Proceedings of the IEEE International Conference on Control Applications (CCA), pp 1019–1024 (2008a)

  7. Caicedo-Nunez, C.H., Zefran, M.: A coverage algorithm for a class of non-convex regions. In: Proceedings of the IEEE Conference on Decision and Control (CDC), pp 4244–4249 (2008b)

  8. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks. IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

    Article  Google Scholar 

  9. Daskin, M., Maass, K.: The p-median problem. In: Location Science, pp 21–45. Springer International Publishing (2015)

  10. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(l 959), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: Applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Durham, J., Carli, R., Frasca, P., Bullo, F.: Discrete partitioning and coverage control for gossiping robots. IEEE Trans. Robot. 28(2), 364 – 378 (2012)

  13. Hata, A.Y., Osorio, F.S., Wolf, D.F.: Robust curb detection and vehicle localization in urban environments. In: Proceedings of the 2014 IEEE Intelligent Vehicles Symposium, pp 1257–1262 (2014). doi:10.1109/IVS.2014.6856405

  14. Javanmard Alitappeh, R., Pimenta, L.C.A.: Distributed Safe Deployment of Networked Robots. Distributed Autonomous Robotic Systems, Springer Tracts in Advanced Robotics 12, 65–77 (2016)

    Article  Google Scholar 

  15. Lam, C.P., Chou, C.T., Chiang, K.H., Fu, L.C.: Human-centered robot navigation—-towards a harmoniously human-robot coexisting environment. IEEE Trans. Robot. 27(1), 99–112 (2011)

    Article  Google Scholar 

  16. Lee, S.G., Diaz-Mercado, Y., Egerstedt, M.: Multirobot control using time-varying density functions. IEEE Trans. Robot. 31(2), 489–493 (2015)

    Article  Google Scholar 

  17. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mahboubi, H., Sharifi, F.: Distributed coordination of multi-agent systems for coverage problem in presence of obstacles. In: Proceedings of American Control Conference (ACC), pp 5252–5257 (2012)

  19. d’Andréa Novel, B., Campion, G., Bastin, G.: Control of nonholonomic wheeled mobile robots by state feedback linearization. Int. J. Robot. Res. 14(6), 543–559 (1995)

    Article  MATH  Google Scholar 

  20. Pierson, A., Schwager, M.: Adaptive inter-robot trust for robust multi-robot sensor coverage. Distributed Autonomous Robotic Systems, Springer Tracts in Advanced Robotics 114, 167–183 (2016)

    Google Scholar 

  21. Pierson, A., Figueiredo, L., Pimenta, L.C.A., Schwager, M.: Adapting to performance variations in multi-robot coverage. In: Proceedings of The IEEE International Conference on Robotics and Automation (ICRA), pp 415–420 (2015)

  22. Pimenta, L.C.A., Kumar, V., Mesquita, R.C., Pereira, G.A.S.: Sensing and coverage for a network of heterogeneous robots. In: Proceedings of IEEE Conference on Decision and Control (CDC), pp 3947–3952 (2008)

  23. Pimenta, L.C.A., Schwager, M., Lindsey, Q., Kumar, V., Rus, D., Mesquita, R.C., Pereira, G.A.S.: Simultaneous coverage and tracking (scat) of moving targets with robot networks. Algorithmic Foundation of Robotics VIII(57), 85–99 (2010)

    MATH  Google Scholar 

  24. Reese, J.: Solution Methods for the p-Median Problem: An Annotated Bibliography. Networks 48, 125–142 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schwager, M., Rus, D., Slotine, J.J.: Decentralized, adaptive coverage control for networked robots. Int. J. Robot. Res. 28(3), 357–375 (2009)

    Article  Google Scholar 

  26. Senne, E., Lorena, L.A., Pereira, M.A.: A branch-and-price approach to p-median location problems. Comput. Oper. Res. 32, 1655–1664 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sharifi, F., Zhang, Y., Aghdam, A.G.: A Distributed Deployment Strategy for Multi-Agent Systems Subject to Health Degradation and Communication Delays. J. Intell. Robot. Syst. 73(1), 623–633 (2014)

    Article  Google Scholar 

  28. Sharifi, F., Chamseddine, A., Mahboubi, H., Zhang, Y., Aghdam, A.: A distributed deployment strategy for a network of cooperative autonomous vehicles. IEEE Trans. Control Syst. Technol. 23(2), 737–745 (2015)

    Article  Google Scholar 

  29. Stergiopoulos, Y., Tzes, A.: Coverage-oriented coordination of mobile heterogeneous networks. In: Proceedings of 19th Mediterranean Conference on Control & Automation (MED), pp 175–180 (2011)

  30. Yun, S.k., Rus, D.: Distributed coverage with mobile robots on a graph: locational optimization and equal-mass partitioning. Robotica 32(02), 257–277 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano C. A. Pimenta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javanmard Alitappeh, R., A. S. Pereira, G., R. Araújo, A. et al. Multi-robot Deployment using Topological Maps. J Intell Robot Syst 86, 641–661 (2017). https://doi.org/10.1007/s10846-017-0471-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0471-3

Keywords

Navigation