A Highly Accurate Model-Free Motion Control System with a Mamdani Fuzzy Feedback Controller combined with a TSK Fuzzy Feed-forward Controller

  • Qun Ren
  • Pascal Bigras


In this paper, a new intelligent robot motion control architecture – a highly accurate model-free fuzzy motion control- is proposed in order to achieve improved robot motion accuracy and dynamic performance. Its architecture combines a Mamdani fuzzy proportional (P) and a conventional integral (I) plus derivative (D) controller for the feedback part of the system, and a Takagi-Sugeno-Kang fuzzy controller for the feed-forward, nonlinear part. The fuzzy P + ID controller improves the performance of the nonlinear system, and the TSK fuzzy controller uses a TSK fuzzy inference system based on extended subtractive- clustering method which integrates information on joint angular displacement, velocity and acceleration for torque identification. The advantage of this kind of model-free control is that it uses the information directly from the input/output of the nonlinear system, without any complex robot model computation, in order to decrease the control system’s sensitivity to any dynamical uncertainty. Furthermore, parametric search for clustering parameters in extended subtractive clustering secures the high accuracy of the system identification. Consequently, this proposed model-free fuzzy motion control benefits from the advantages of two kinds of fuzzy system. It not only incorporates flexible design, good performance and simple conception but also ensures precise motion control and great robustness. Comparisons with other intelligent models and results from numerical studies on a 4-bar planar parallel mechanism show the effectiveness and competitiveness of the proposed control.


Fuzzy systems Nonlinear dynamics Motion control Fuzzy logic control Model-free control Intelligent control 



artificial intelligence


accurate model-free fuzzy motion control


adaptive network-based fuzzy inference system


fuzzy inference system


fuzzy logic


fuzzy logic control


fuzzy logic system

fuzzy P + ID

fuzzy logic proportional plus conventional integral and derivative


membership function


model-free PID fuzzy feed forward control




neural network


proportional, integral, derivative






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akbas, K.: Application of Neural Networks to Modeling and Control of Parallel Manipulators. In: Ryu, J. H. (ed.) Parallel Manipulators, New Developments, pp. 21–40. I-Tech Education and Publishing, Vienna, Austria (2008)Google Scholar
  2. 2.
    AL-Saedi, M., Wu, H., Handroos, H.: ANFIS And fuzzy tuning of PID controller for trajectory tracking of a flexible hydraulically driven parallel robot machine. Journal of Automation and Control Engineering 1(3), 70–77 (2013)CrossRefGoogle Scholar
  3. 3.
    Astrom, K.J., Hang, C.C., Persson, P., Ho, W.K.: Towards intelligent PID control. Automatica 28(1), 1–9 (1992)CrossRefGoogle Scholar
  4. 4.
    Chang, P., Jung, P.: A systematic method for gain selection of robust PID control for nonlinear plants of secondorder controller canonical form. IEEE Trans. Control Syst. Technol. 17, 473–483 (2009)CrossRefGoogle Scholar
  5. 5.
    Chen, W.H., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods - an overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2016)CrossRefGoogle Scholar
  6. 6.
    Chiu, S.L.: Fuzzy model identification based on cluster estimation. Journal on International Fuzzy Systems 2, 267–278 (1994)CrossRefGoogle Scholar
  7. 7.
    Demirli, K., Cheng, S.X., Muthukumaran, P.: Subtractive clustering based modeling of job sequencing with parametric search. Fuzzy Sets Syst. 137(2), 235–270 (2003)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fazzolari, M., Alcala, R., Nojima, Y., Ishibuchi, H., Herrera, F.: A review of the application of multiobjective evolutionary fuzzy systems: current status and further directions. IEEE Trans. Fuzzy Syst. 21(1), 46–65 (2013)CrossRefGoogle Scholar
  9. 9.
    Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)CrossRefGoogle Scholar
  10. 10.
    Fliess, M., Join, C.: Model-free control. Int. J. Control. 86(12), 2228–2252 (2013)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Formentin, S., de Filippi, P., Corno, M., Tanelli, M., Savaresi, S.: Data-driven design of braking control systems. IEEE Trans. Control Syst. Technol. 21, 186–193 (2013)CrossRefGoogle Scholar
  12. 12.
    Ho, W. K., Hong, Y, Hansson, A, Hjalmarsson, H., Deng, J.W.: Relay auto-tuning of PID controllers using iterative feedback tuning. Automatica 39(1), 149–157 (2003)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Jang, J.-S. R.: ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)CrossRefGoogle Scholar
  14. 14.
    Keel, L.H., Bhattacharya, S.P.: Controller synthesis free of analytical models: three term controllers. IEEE Trans. Autom. Control 53, 1353–1369 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, W.: Design of a hybrid fuzzy logic proportional plus conventional integral-derivative controller. IEEE Trans. Fuzzy Syst. 6(4), 449–463 (1998)CrossRefGoogle Scholar
  16. 16.
    Lin, C.M., Li, H.Y.: Dynamic petri fuzzy cerebellar model articulation controller design for a magnetic levitation system and a two-axis linear piezoelectric ceramic motor drive system. IEEE Trans. Control Syst. Technol. 23(2), 693–699 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mahfouf, M., Abbod, M.F., Linkens, D.A.: Online elicitation of Mamdani-type fuzzy rules via TSK-based generalized predictive control. IEEE Trans. Syst. Man Cybern. B Cybern. 33(3), 465–475 (2003)CrossRefGoogle Scholar
  18. 18.
    Mamdani, E.H., Assilian, S.: Applications of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Elec. Eng. 121, 1585–1588 (1974)MATHCrossRefGoogle Scholar
  19. 19.
    Mendel, J., Hagras, H., Tan, W., Melek, W., Ying, H.: Introduction to type-2 fuzzy logic control, theory and applications. Wiley-IEEE Press (2014)Google Scholar
  20. 20.
    Milanes, V., Villagra J., Perez, J., Gonzalez C.: Low speed longitudinal controllers for mass-produced cars: a comparative study. IEEE Trans. Ind. Electron. 59, 620–628 (2012)CrossRefGoogle Scholar
  21. 21.
    Morales, R., Feliu, V., Sira-Ramirez, H.: Nonlinear control for magnetic levitation systems based on fast online algebraic identification of the input gain. IEEE Trans. Control Syst. Technol. 19, 757–77 (2011)MATHCrossRefGoogle Scholar
  22. 22.
    Pedrycz, W.: Identification in fuzzy systems. IEEE Trans. Fuzzy Syst. 14, 361–366 (1984)MathSciNetMATHGoogle Scholar
  23. 23.
    Precup, R.E., Hellendo, H.: A survey on industrial applications of fuzzy control. Comput. Ind. 62(3), 213–226 (2011)CrossRefGoogle Scholar
  24. 24.
    Qi, Z. Mcinroy J.E., Jafari, F.: Trajectory tracking with parallel robots using low chattering fuzzy sliding mode controller. J. Intell. Robot. Syst. 48(3), 333–356 (2007)CrossRefGoogle Scholar
  25. 25.
    Rad, A.B., Chan, P.T., Mok, C.K.: An online learning fuzzy controller. IEEE Trans. Ind. Electron. 50(5), 1016–1021 (2003)CrossRefGoogle Scholar
  26. 26.
    Ren, Q., Baron, L., Balazinski, M., Jemielniak, K.: TSK Fuzzy modeling for tool wear condition in turning processes: an experimental study. Eng. Appl. Artif. Intel. 24(2), 260–265 (2011)CrossRefGoogle Scholar
  27. 27.
    Ren, Q., Balazinski, M., Jemielniak, K., Baron, L., Achiche, S.: Experimental and fuzzy modeling analysis on dynamic cutting force in micro-milling. Soft. Comput. 17, 1687–1697 (2013)CrossRefGoogle Scholar
  28. 28.
    Ren, Q., Bigras, P.: Model-free adaptive neural fuzzy feed forward torque control for nonlinear parallel mechanism. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Busan, Korea, 1043–1048 (2015)Google Scholar
  29. 29.
    Ren, Q., Baron, L., Balazinski, M., Jemielniak, K., Botez, R., Achiche, S.: Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling. Inf. Sci. 255, 121–134 (2014)CrossRefGoogle Scholar
  30. 30.
    Sugeno, M., Kang, G.: Fuzzy modeling and control of multilayer incinerator. Fuzzy Set. Syst. 18, 329–346 (1986)MATHCrossRefGoogle Scholar
  31. 31.
    Sun, Y.L., Er, M.J.: Hybrid fuzzy control of robotics systems. IEEE Trans. Fuzzy Syst. 12(6), 755–765 (2004)CrossRefGoogle Scholar
  32. 32.
    Syafiie, S., Tadeo, F., Martinez, E., Alvarez, T.: Model free control based on reinforcement learning for a wastewater treatment problem. Appl. Soft Comput. 1, 73–82 (2011)CrossRefGoogle Scholar
  33. 33.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)MATHCrossRefGoogle Scholar
  34. 34.
    Tong, R.M. Gupta, M.M., Rewgade, R.K., Yager, R.R. (eds.): The construction and evaluations of fuzzy models. North-Holland, Amsterdam (1979)Google Scholar
  35. 35.
    Villagra, J., Herrero-Perez, D.: A comparison of control techniques for robust docking maneuvers for an AVG. IEEE Trans. Control Syst. Technol. 20, 1116–1123 (2012)CrossRefGoogle Scholar
  36. 36.
    Wang, F.Y., Liu, D.: Networked Control Systems: Theory and Applications. Springer (2008)Google Scholar
  37. 37.
    Yager, R.R., Filev, P.: Essentials of Fuzzy Modeling and Control. Wiley, New York (1994)Google Scholar
  38. 38.
    Qu, Z., Dawson, D.M.: Robust Tracking Control of Robot Manipulators, p 233. IEEE Press (1996)Google Scholar
  39. 39.
    Zi, B.Y., Duan, J., Du, L., Bao, H.: Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics 18(1), 1–12 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Automatic Manufacturing Engineering, École de Technologie SupérieureUniversity of QuebecMontrealCanada

Personalised recommendations