Globally Stabilizing a Class of Underactuated Mechanical Systems on the Basis of Finite-Time Stabilizing Observer

  • Guangping He
  • Ruoyu Chen
  • Yuankai Zhang


Globally exponentially stabilizing a class of underactuated mechanical systems (UMS) with nonaffine nonlinear dynamics is investigated in this paper. The considered UMS has a nonaffine nonlinear subsystem that can be globally asymptotically stabilized by saturated feedbacks, but the saturated feedback cannot be analytically expressed in closed-form. This obstacle limits the real-time applications of most controllers presented in literatures. In this paper, a hybrid feedback strategy is presented to globally exponentially stabilize the UMS with nonaffine and strict-feedback canonical forms. The hybrid feedback strategy is characterized by the composition of partial states feedback and partial virtual outputs feedback based on a higher-order finite-time stabilizing observer. The presented hybrid feedback controller can be synthesized by applying Lyapunov stability theory. Some numerical simulations associated with two underactuated nonlinear systems, the Acrobot system and the Inertia-Wheel-Pendulum (IWP) system, are employed to demonstrate the effectiveness of the proposed controller. The presented control strategy can be applied in real time, thus providing a new feasible dynamic model other than the differential flatness systems for synthesizing the mechanical systems of general underactuated legged robots.


Non-affine nonlinear systems Underactuation Finite-time Observer Controller 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khalil, H.K.: Nonlinear systems. Publishing house of electronics industry, Beijing (2002)MATHGoogle Scholar
  2. 2.
    He, G., Geng, Z.: Dynamics and Robust Control of an Underactuated Torsional Vibratory Gyroscope Actuated by Electrostatic Actuator. IEEE/ASME Trans. Mechatron. (2014). doi: 10.1109/TMECH.2014.2350535 Google Scholar
  3. 3.
    Teel, A.R.: A Nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans. Autom. Control 41(9), 1256–1270 (1996)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Mazenc, F., Mondie, S., Francisco, R.: Global asymptotic stabilization of feedforward systems with delay in the input. IEEE Trans. Autom. Control 49(5), 844–850 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lin, W.: Global asymptotic stabilization of general nonlinear systems with stable free dynamics via passivity and bounded feedback. Automatica 32(6), 915–924 (1996)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Shapiro, B., Kissel, J., Mavalvala, N., Strain, K., Youcef-Toumi, K.: Limitations of Underactuated Modal Damping for Multistage Vibration Isolation Systems. IEEE/ASME Trans. Mechatron. 20(1), 393–404 (2015)CrossRefGoogle Scholar
  7. 7.
    Olfati-Saber, R.: Normal forms for underactuated mechanical systems with symmetry. IEEE Trans. Autom. Control 47(2), 305–308 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, J., Qian, C.: Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems. IEEE Trans. Autom. Control 51(5), 879–884 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Moulay, E., Perruquent, W.: Stabilization of nonaffine systems: a constructive method for polynomial systems. IEEE Trans. Autom. Syst. 50(4), 520–526 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhao, Y., Farrell, J.A.: Locally weighted online approximation-based control for nonaffine systems. IEEE Trans. Neural Netw. 18(6), 1709–1723 (2007)CrossRefGoogle Scholar
  11. 11.
    Dong, W., Zhao, Y., Chen, Y., Farrell, J.A.: Tracking control for nonaffine systems: a self-organizing approximation approach. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 223–235 (2012)CrossRefGoogle Scholar
  12. 12.
    Na, B., Kong, K.: Control Power Reduction and Frequency Bandwidth Enlargement of Robotic Legs by Nonlinear Resonance. IEEE/ASME Trans. Mechatron. (2015). doi: 10.1109/TMECH.2014.2376564 Google Scholar
  13. 13.
    Schultz, G., Mombaur, K.: Modeling and optimal control of Human-Like running. IEEE/ASME Trans. Mechatron. 15(5), 783–792 (2010)CrossRefGoogle Scholar
  14. 14.
    Tlalolini, D., Chevallereau, C., Aoustin, Y.: Human-Like Walking: Optimal motion of a bipedal robot with Toe-Rotation motion. IEEE/ASME Trans. Mechatron. 16(2), 310–320 (2011)CrossRefGoogle Scholar
  15. 15.
    He, G., Geng, Z.: Dynamics synthesis and control for a hopping robot with articulated leg. Mech. Mach. Theory 46, 1669–1688 (2011)CrossRefGoogle Scholar
  16. 16.
    Sangwan, V., Agrawal, S.K.: Differentially Flat Design of Bipeds Ensuring Limit Cycles. IEEE/ASME Trans. Mechatron. 14(6), 647–657 (2009)CrossRefGoogle Scholar
  17. 17.
    Lai, X., She, J., Yang, S.X., Wu, M.: Comprehensive unified control strategy for underactuated two-link manipulators. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(2), 389–398 (2009)MATHCrossRefGoogle Scholar
  18. 18.
    Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles, Massachusetts Institute of Technology Doctor Dissertation (2001)Google Scholar
  20. 20.
    Xu, L., Hu, Q.: Output-feedback stabilization control for a class of underactuated mechanical systems. IET Control Theory Appl. 7(7), 985–996 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    He, G., Geng, Z.: Finite-time stabilization of a comb-drive electrostatic microactuator. IEEE/ASME Trans. Mechatron. 17(1), 107–115 (2012)CrossRefGoogle Scholar
  22. 22.
    Huang, X., Lin, W., Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41, 881–888 (2005)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Bhat, S.P., Bernstein, D.S: Finite-Time Stability of Continuous Autonomous Systems. SIAM J. Control Optim. 38(3), 751–766 (2000)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Levant, A.: Higher-order sliding modes, differentiation and output feedback control. Int. J. Control. 76(9), 924–941 (2003)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Esfandiari, F., Khalil, H.K.: Output feedback stabilization of fully linearizable systems. Int. J. Control. 56, 1007–1037 (1992)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Khalil, H.K.: A note on the robustness of high-gain-observer-based controllers to unmodeled actuator and sensor dynamics. Automatica 41, 1821–1824 (2005)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Atassi, A.N., Khalil, H.K.: A separation principle for the control of a class of nonlinear systems. IEEE Trans. Autom. Control 46(5), 742–746 (2001)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Hong, Y., Wang, J., Xi, Z.: Stabilization of uncertain chained form systems within finite setting time. IEEE Trans. Autom. Control 50(9), 1379–1384 (2005)CrossRefGoogle Scholar
  29. 29.
    Sira-Ramirez, H., Agrawal, S.K.: Differentially flat systems. Marcel Dekker, Inc., New York Basel (2004)MATHGoogle Scholar
  30. 30.
    Spong, M.W., Corke, P., Lozano, R.: Nonlinear control of the Inertia Wheel Pendulum. Automatica 37(11), 1845–1851 (2001)MATHCrossRefGoogle Scholar
  31. 31.
    Sun, N., Fang, Y., Zhang, Y., Ma, B.: A Novel Kinematic Coupling-Based Trajectory Planning Method for Overhead Cranes. IEEE/ASME Trans. Mechatron. 17(1), 166–173 (2012)CrossRefGoogle Scholar
  32. 32.
    Agrawal, S.K., Fattah, A.: Motion control of a novel planar biped with nearly linear dynamics. IEEE/ASME Trans. Mechatron. 11(2), 162–168 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Electrical EngineeringNorth China University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations