Journal of Intelligent & Robotic Systems

, Volume 86, Issue 2, pp 225–254 | Cite as

Modelling and Control Strategies in Path Tracking Control for Autonomous Ground Vehicles: A Review of State of the Art and Challenges

  • Noor Hafizah Amer
  • Hairi Zamzuri
  • Khisbullah Hudha
  • Zulkiffli Abdul Kadir


Autonomous vehicle field of study has seen considerable researches within three decades. In the last decade particularly, interests in this field has undergone tremendous improvement. One of the main aspects in autonomous vehicle is the path tracking control, focusing on the vehicle control in lateral and longitudinal direction in order to follow a specified path or trajectory. In this paper, path tracking control is reviewed in terms of the basic vehicle model usually used; the control strategies usually employed in path tracking control, and the performance criteria used to evaluate the controller’s performance. Vehicle model is categorised into several types depending on its linearity and the type of behaviour it simulates, while path tracking control is categorised depending on its approach. This paper provides critical review of each of these aspects in terms of its usage and disadvantages/advantages. Each aspect is summarised for better overall understanding. Based on the critical reviews, main challenges in the field of path tracking control is identified and future research direction is proposed. Several promising advancement is proposed with the main prospect is focused on adaptive geometric controller developed on a nonlinear vehicle model and tested with hardware-in-the-loop (HIL). It is hoped that this review can be treated as preliminary insight into the choice of controllers in path tracking control development for an autonomous ground vehicle.


Path tracking Autonomous vehicle Steering control Trajectory following 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wallace, R., Stentz, A., Thorpe, C.E., Maravec, H., Whittaker, W., Kanade, T.: First Results in Robot Road-Following. In: IJCAI, pp 1089–1095. Citeseer (1985)Google Scholar
  2. 2.
    Kanade, T., Thorpe, C., Whittaker, W.: Autonomous land vehicle project at CMU. In: Proceedings of the 1986 ACM fourteenth annual conference on Computer science, pp 71–80. ACM (1986)Google Scholar
  3. 3.
    Insights, C.: 30 Corporations Working On Autonomous Vehicles. Accessed 26th April 2016 (2016)
  4. 4.
    SAE-J3016: Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems. In: O.-R.A.V.S. (ed.) Committee (2014)Google Scholar
  5. 5.
    Amidi, O.: Integrated Mobile Robot Control. In: Robotics Institute, Carnegie Mellon University (1990)Google Scholar
  6. 6.
    Ardiny, H., Witwicki, S., Mondada, F.: Construction automation with autonomous mobile robots: A review. In: 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM) 7-9 Oct. 2015 , pp 418–424 (2015)Google Scholar
  7. 7.
    Katrakazas, C., Quddus, M., Chen, W.-H., Deka, L.: Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transp. Res. C: Emerg. Technol. 60, 416–442 (2015). doi: 10.1016/j.trc.2015.09.011 CrossRefGoogle Scholar
  8. 8.
    Li, M., Imou, K., Wakabayashi, K., Yokoyama, S.: Review of research on agricultural vehicle autonomous guidance. Int. J. Agric. Biol. Eng. 2(3), 1–16 (2009)Google Scholar
  9. 9.
    Veres, S.M., Molnar, L., Lincoln, N.K., Morice, C.P.: Autonomous vehicle control systems—a review of decision making. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering 225(2), 155–195 (2011)Google Scholar
  10. 10.
    Töro, O., Bécsi, T., Aradi, S.: Design of Lane Keeping Algorithm of Autonomous Vehicle. Period. Polytech. Transp. Eng. 44(1), 60–68 (2016). doi: 10.3311/PPtr.8177 CrossRefGoogle Scholar
  11. 11.
    Solea, R., Nunes, U.: Trajectory planning and sliding-mode control based trajectory-tracking for cybercars. Integrated Computer Aided Engineering 13(1), 1–15 (2006)Google Scholar
  12. 12.
    Shan, Y., Yang, W., Chen, C., Zhou, J., Zheng, L., Li, B.: CF-Pursuit: A Pursuit Method with a Clothoid Fitting and a Fuzzy Controller for Autonomous Vehicles. Int. J. Adv. Rob. Syst. 12(134), 1–13 (2015)Google Scholar
  13. 13.
    Coulter, R.C.: Implementation of the Pure Pursuit Path Tracking Algorithm. In: Robotics Institute, Carnegie Mellon University (1990)Google Scholar
  14. 14.
    Snider, J.M.: Automatic Steering Methods for Autonomous Automobile Path Tracking. In: Robotics Institute, Carnegie Mellon University (2009)Google Scholar
  15. 15.
    Wit, J.S.: Vector pursuit path tracking for autonomous ground vehicles. University of Florida (2000)Google Scholar
  16. 16.
    Wit, J., Crane, C.D., Armstrong, D.: Autonomous ground vehicle path tracking. J. Robot. Syst. 21(8), 439–449 (2004)CrossRefGoogle Scholar
  17. 17.
    Wang, J., Steiber, J., Surampudi, B.: Autonomous ground vehicle control system for high-speed and safe operation. Int. J. Veh. Auton. Syst. 7(1-2), 18–35 (2009)CrossRefGoogle Scholar
  18. 18.
    Genta, G.: Vibration Dynamics and Control, 2 ed Mechanical Engineering Series (2009)Google Scholar
  19. 19.
    Ping, E.P., Hudha, K., Jamaluddin, H.: Hardware-in-the-loop simulation of automatic steering control for lanekeeping manoeuvre: outer-loop and inner-loop control design. Int. J. Veh. Saf. 5(1), 35–59 (2010)CrossRefGoogle Scholar
  20. 20.
    Zakaria, M.A., Zamzuri, H., Mamat, R., Mazlan, S.A.: A path tracking algorithm using future prediction control with spike detection for an autonomous vehicle robot. Int. j. Adv. Rob syst (2013). doi: 10.5772/56658 Google Scholar
  21. 21.
    Elbanhawi, M., Simic, M., Jazar, R.: The Role of Path Continuity in Lateral Vehicle Control. Procedia. Comput. Sci. 60, 1289–1298 (2015). doi: 10.1016/j.procs.2015.08.194 CrossRefGoogle Scholar
  22. 22.
    Raffo, G.V., Gomes, G.K., Normey-Rico, J.E., Kelber, C.R., Becker, L.B.: A predictive controller for autonomous vehicle path tracking. IEEE Trans. Intell. Trans.. Syst. 10(1), 92–102 (2009). doi: 10.1109/TITS.2008.2011697 CrossRefGoogle Scholar
  23. 23.
    Guo, L., Ge, P.-s., Yang, X.-l., Li, B.: Intelligent vehicle trajectory tracking based on neural networks sliding mode control. In: International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS) 9-10 Oct. 2014, pp 57–62 (2014)Google Scholar
  24. 24.
    Lucet, E., Lenain, R., Grand, C.: Dynamic path tracking control of a vehicle on slippery terrain. Control Eng. Pract. 42, 60–73 (2015). doi: 10.1016/j.conengprac.2015.05.008 CrossRefGoogle Scholar
  25. 25.
    Bayar, G., Bergerman, M., Koku, A.B.: Improving the trajectory tracking performance of autonomous orchard vehicles using wheel slip compensation. Biosystems Eng. (2016). ”In Press”Google Scholar
  26. 26.
    Hoffmann, G.M., Tomlin, C.J., Montemerlo, D., Thrun, S.. In: Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and Racing American Control Conference, 2007. ACC ’07, 9-13 July 2007, pp 2296–2301 (2007)Google Scholar
  27. 27.
    Rossetter, E.J.: A potential field framework for active vehicle lanekeeping assistance. stanford university (2003)Google Scholar
  28. 28.
    Hu, C., Jing, H., Wang, R., Yan, F., Chadli, M.: Robust output-feedback control for path following of autonomous ground vehicles. Mech. Syst. Sig. Process. 70–71, 414–427 (2016). doi: 10.1016/j.ymssp.2015.09.017 CrossRefGoogle Scholar
  29. 29.
    Hima, S., Lusseti, B., Vanholme, B., Glaser, S., Mammar, S.: Trajectory tracking for highly automated passenger vehicles. In: International Federation of Automatic Control (IFAC) World Congress,(Milano), pp 12958–12963 (2011)Google Scholar
  30. 30.
    Zhao, P., Chen, J., Song, Y., Tao, X., Xu, T., Mei, T.: Design of a control system for an autonomous vehicle based on adaptive-PID. Int. J. Adv. Rob. Syst. 9 (2012)Google Scholar
  31. 31.
    Zakaria, M.A.: Trajectory Tracking Algorithm for Autonomous Ground Vehicle. Universiti Teknologi Malaysia (2015)Google Scholar
  32. 32.
    Falcone, P., Borrelli, F., Asgari, J., Tseng, H.E., Hrovat, D.: Predictive active steering control for autonomous vehicle systems. IEEE Trans. Control Syst. Technol. 15(3), 566–580 (2007). doi: 10.1109/TCST.2007.894653 CrossRefMATHGoogle Scholar
  33. 33.
    Amer, N.H., Zamzuri, H., Hudha, K., Aparow, V.R., Kadir, Z.A., Abidin, A.F.Z.: Modelling and trajectory following of an armoured vehicle. In: 2016 SICE International Symposium on Control Systems (ISCS), pp 1–6. IEEE (2016)Google Scholar
  34. 34.
    Schofield, B.: Model-based vehicle dynamics control for active safety. Lund University (2008)Google Scholar
  35. 35.
    Bayliss, M.: A Simplified Vehicle and Driver Model for Vehicle Systems Development Proceedings of the Driving Simulator Conference 2005 (2005)Google Scholar
  36. 36.
    Jahromi, A.F., Bhat, R.B., Xie, W.F.: Integrated ride and handling vehicle model using Lagrangian quasi-coordinates. Int. J. Automot. Technol. 16(2), 239–251 (2015). doi: 10.1007/s12239-015-0026-1 CrossRefGoogle Scholar
  37. 37.
    Yun, X.: Yamamoto y.: on feedback linearization of mobile robots (1992)Google Scholar
  38. 38.
    Yun, X., Yamamoto, Y.: Internal Dynamics of a Wheeled Mobile Robot. In: Proceedings of the 1993 IEEE/RSJ International Conference On Intelligent Robots and Systems ’93, IROS ’93. , 26-30 Jul 1993, vol. 1282, pp 1288–1294 (1993)Google Scholar
  39. 39.
    Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot: backstepping kinematics into dynamics. In: Proceedings of the 34th IEEE Conference on Decision and Control 13-15 Dec 1995, vol. 3804, pp 3805–3810 (1995)Google Scholar
  40. 40.
    Fukao, T., Nakagawa, H., Adachi, N.: Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans. Robot. Autom. 16(5), 609–615 (2000). doi: 10.1109/70.880812 CrossRefGoogle Scholar
  41. 41.
    McVonville, J.B.: Introduction to mechanical system simulation using adams SDC publications (2015)Google Scholar
  42. 42.
    Popp, K., Schiehlen, W.: Ground vehicle dynamics. Springer Science & Business Media (2010)Google Scholar
  43. 43.
    Dhaouadi, R., Hatab, A.A.: Dynamic modelling of differential-drive mobile robots using lagrange and newton-euler methodologies: a unified framework. Adv. Robot. Autom. 2013 (2013)Google Scholar
  44. 44.
    Bloch, A., Baillieul, J., Crouch, P., Marsden, J.E., Krishnaprasad, P.S., Murray, R., Zenkov, D.: Nonholonomic mechanics and control, vol. 24. Springer (2003)Google Scholar
  45. 45.
    Nemark, J.I., Fufaev, N.A.: Dynamics of nonholonomic systems. Amer. Math. Soc. 33 (2004)Google Scholar
  46. 46.
    De Luca, A., Oriolo, G., Samson, C.: Feedback Control of a Nonholonomic Car-Like Robot. In: Laumond, J.P. (ed.) Robot Motion Planning and Control. Lecture Notes in Control and Information Sciences, vol. 229, pp 171– 253. Springer, Berlin Heidelberg (1998)Google Scholar
  47. 47.
    Rankin, A.L., Crane Iii, C.D., Armstrong Ii, D.G., Nease, A.D., Brown, H.E.: Autonomous path-planning navigation system for site characterization, 176–186 (1996)Google Scholar
  48. 48.
    Barton, M.J.: Controller Development and Implementation for Path Planning and Following in an Autonomous Urban Vehicle. The University Of Sydney (2001)Google Scholar
  49. 49.
    Scharf, L., Harthill, W., Moose, P.: A comparison of expected flight times for intercept and pure pursuit missiles. IEEE Trans. Aerosp. Electron. Syst. 4(AES-5), 672–673 (1969)CrossRefGoogle Scholar
  50. 50.
    Ollero, A., Arrue, B.C., Ferruz, J., Heredia, G., Cuesta, F., López-Pichaco, F., Nogales, C.: Control and perception components for autonomous vehicle guidance. Application to the ROMEO vehicles. Control Eng. Pract. 7(10), 1291–1299 (1999). doi: 10.1016/S0967-0661(99)00091-X CrossRefGoogle Scholar
  51. 51.
    Kim, D.-H., Han, C.-S., Lee, J.Y.: Sensor-based motion planning for path tracking and obstacle avoidance of robotic vehicles with nonholonomic constraints. In: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 0954406212446900 (2012)Google Scholar
  52. 52.
    Ringdahl, O.: Techniques and Algorithms for Autonomous Vehicles in Forest Environment. Umeå University, Sweden (2007)Google Scholar
  53. 53.
    Bayar, G., Bergerman, M., Koku, A.B., Konukseven, E.i.: Localization and control of an autonomous orchard vehicle. Comput. Electron. Agric. 115, 118–128 (2015). doi: 10.1016/j.compag.2015.05.015 CrossRefGoogle Scholar
  54. 54.
    Kato, S., Takeuchi, E., Ishiguro, Y., Ninomiya, Y., Takeda, K., Hamada, T.: An open approach to autonomous vehicles. IEEE Micro 35 (6), 60–68 (2015). doi: 10.1109/MM.2015.133 CrossRefGoogle Scholar
  55. 55.
    Campbell, S.F.: Steering control of an autonomous ground vehicle with application to the DARPA urban challenge. Massachusetts Institute of Technology (2007)Google Scholar
  56. 56.
    Murphy, K.N.: Analysis of robotic vehicle steering and controller delay. In: 5th International Symposium on Robotics and Manufacturing (ISRAM), pp 631–636. Citeseer (1994)Google Scholar
  57. 57.
    Ollero, A., Heredia, G.: Stability analysis of mobile robot path tracking. In: Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95 Human Robot Interaction and Cooperative Robots, pp 461–466. IEEE (1995)Google Scholar
  58. 58.
    Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., How, J.P.: Motion Planning in Complex Environments Using Closed-Loop Prediction. In: Proceedings of the AIAA Guidance Navigation, and Control Conf. and Exhibit (2008)Google Scholar
  59. 59.
    Buehler, M., Iagnemma, K., Singh, S.: The 2005 DARPA grand challenge: the great robot race, vol. 36. Springer Science & Business Media (2007)Google Scholar
  60. 60.
    Buehler, M., Iagnemma, K., Singh, S.: The DARPA urban challenge: autonomous vehicles in city traffic, vol. 56. Springer (2009)Google Scholar
  61. 61.
    Hellstrom, T., Ringdahl, O.: Follow the Past: a path-tracking algorithm for autonomous vehicles. Int. J. Veh. Auton. Syst. 4(2-4), 216–224 (2006)CrossRefGoogle Scholar
  62. 62.
    Zakaria, M.A., Zamzuri, H., Mazlan, S.A.: Dynamic Curvature Steering Control for Autonomous Vehicle: Performance Analysis. IOP Conf. Ser.: Mater. Sci. Eng. 114(1), 012149 (2016)CrossRefGoogle Scholar
  63. 63.
    Ollero, A., García-cerezo, A., Martinez, J.: Fuzzy supervisory path tracking of mobile reports. Control Eng. Pract. 2(2), 313–319 (1994)CrossRefGoogle Scholar
  64. 64.
    Chen, C., Tan, H.-S.: Experimental study of dynamic look-ahead scheme for vehicle steering control. In: Proceedings of the 1999 American Control Conference, pp 3163–3167. IEEE (1999)Google Scholar
  65. 65.
    Chen, C., Tan, H.-S.: Steering Control of High Speed Vehicles: Dynamic Look Ahead and Yaw Rate Feedback. In: Proceedings of the 37Th IEEE Conference On Decision and Control, vol. 1021, pp 1025–1030 (1998)Google Scholar
  66. 66.
    Park, M., Lee, S., Han, W.: Development of Steering Control System for Autonomous Vehicle Using Geometry-Based Path Tracking Algorithm. ETRI Journal 37(3), 617–625 (2015). doi: 10.4218/etrij.15.0114.0123 CrossRefGoogle Scholar
  67. 67.
    Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: The robot that won the DARPA Grand Challenge. J. Field Rob. 23(9), 661–692 (2006). doi: 10.1002/rob.20147 CrossRefGoogle Scholar
  68. 68.
    Davis, J.: Say Hello to Stanley. MAGAZINE 2016 (2006)Google Scholar
  69. 69.
    Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for an autonomous mobile robot. In: Proceedings of the 1990 IEEE International Conference on Robotics and Automation 13-18 May 1990, vol. 381, pp 384–389 (1990)Google Scholar
  70. 70.
    Sun, Z., Chen, Q., Nie, Y., Liu, D., He, H.: Ribbon Model based path tracking method for autonomous land vehicle. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 7-12 Oct. 2012, pp 1220–1226 (2012)Google Scholar
  71. 71.
    Jiang, Z.-P., Nijmeijer, H.: Tracking Control of Mobile Robots: A Case Study in Backstepping*. Automatica 33(7), 1393–1399 (1997). doi: 10.1016/S0005-1098(97)00055-1 MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Ye, J.: Tracking control for nonholonomic mobile robots: Integrating the analog neural network into the backstepping technique. Neurocomputing 71(16-18), 3373–3378 (2008). doi: 10.1016/j.neucom.2007.11.005 CrossRefGoogle Scholar
  73. 73.
    Zakaria, M.A., Zamzuri, H., Mazlan, S.A., Zainal, S.M.H.F.: Vehicle Path Tracking Using Future Prediction Steering Control. Procedia Engineering 41, 473–479 (2012). doi: 10.1016/j.proeng.2012.07.200 CrossRefGoogle Scholar
  74. 74.
    Scaglia, G., Rosales, A., Quintero, L., Mut, V., Agarwal, R.: A linear-interpolation-based controller design for trajectory tracking of mobile robots. Control Eng. Pract. 18(3), 318–329 (2010). doi: 10.1016/j.conengprac.2009.11.011 CrossRefGoogle Scholar
  75. 75.
    Scaglia, G., Serrano, E., Rosales, A., Albertos, P.: Linear interpolation based controller design for trajectory tracking under uncertainties: Application to mobile robots. Control Eng. Pract. 45, 123–132 (2015). doi: 10.1016/j.conengprac.2015.09.010 CrossRefGoogle Scholar
  76. 76.
    Rajamani, R.: Vehicle Dynamics and Control, 2 ed. Mechanical Engineering Series (2012)Google Scholar
  77. 77.
    Tewari, A.: MODER CONTROL DESIGN (2002)Google Scholar
  78. 78.
    Sharp, R.: Rider control of a motorcycle near to its cornering limits. Veh. Syst. Dyn. 50(8), 1193–1208 (2012)CrossRefGoogle Scholar
  79. 79.
    Sharp, R.S.: Driver steering control and a new perspective on car handling qualities. In: Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, vol. 219, pp 1041–1051 (2005)Google Scholar
  80. 80.
    Sharp, R., Casanova, D., Symonds, P.: A mathematical model for driver steering control, with design, tuning and performance results. Veh. Syst. Dyn. 33(5), 289–326 (2000)CrossRefGoogle Scholar
  81. 81.
    Martins, F.N., Celeste, W.C., Carelli, R., Sarcinelli-Filho, M., Bastos-Filho, T.F.: An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Eng. Pract. 16 (11), 1354–1363 (2008)CrossRefGoogle Scholar
  82. 82.
    Ying, Z., Yuqiang, W.: Output feedback adaptive control of multivariable nonlinear systems using Nussbaum gain method. J. Syst. Eng. Electron. 17(4), 829–835 (2006)CrossRefMATHGoogle Scholar
  83. 83.
    Xudong, Y., Jingping, J., Brierley, S., Chiasson, J., Lee, E., Zak, S., Demetriou, M.A., Polycarpou, M.M.: Adaptive nonlinear design without a priori knowledge of control directions (1998)Google Scholar
  84. 84.
    Hima, S., Glaser, S., Vanholme, B.: Controller design for trajectory tracking of autonomous passenger vehicles. In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp 1459–1464. IEEE (2011)Google Scholar
  85. 85.
    Pratama, P.S., Jeong, J.H., Jeong, S.K., Kim, H.K., Kim, H.S., Yeu, T.K., Hong, S., Kim, S.B.: Adaptive Backstepping Control Design for Trajectory Tracking of Automatic Guided Vehicles. In: Duy, H.V., Dao, T.T., Zelinka, I., Choi, H. -S., Chadli, M (eds.) AETA 2015: Recent Advances in Electrical Engineering and Related Sciences, pp 589–602. Springer International Publishing, Cham (2016)Google Scholar
  86. 86.
    Li, X., Wang, Z., Zhu, J., Chen, Q.: Adaptive tracking control for wheeled mobile robots with unknown skidding. In: 2015 IEEE Conference on Control Applications (CCA), 21-23 Sept. 2015 , pp 1674–1679 (2015)Google Scholar
  87. 87.
    Huang, D., Zhai, J., Ai, W., Fei, S.: Disturbance observer-based robust control for trajectory tracking of wheeled mobile robots. Neurocomputing (2016). doi: 10.1016/j.neucom.2015.11.099 Google Scholar
  88. 88.
    Khatib, E.I.A., Al-Masri, W.M.F., Mukhopadhyay, S., Jaradat, M.A., Abdel-Hafez, M.: A comparison of adaptive trajectory tracking controllers for wheeled mobile robots. In: 2015 10th International Symposium on Mechatronics and its Applications (ISMA), 8-10 Dec. 2015, pp 1–6 (2015)Google Scholar
  89. 89.
    Dørum, J., Utstumo, T., Gravdahl, J.T.: Experimental comparison of adaptive controllers for trajectory tracking in agricultural robotics. In: 2015 19th International Conference on System Theory, Control and Computing (ICSTCC), 14-16 Oct. 2015, pp 206–212 (2015)Google Scholar
  90. 90.
    Bin, L., Yongsheng, D., Kuangrong, H., Jian, L.: Research on mobile robot path tracking based on color vision. In: Chinese Automation Congress (CAC), 2015, 27-29 Nov. 2015, pp 371–375 (2015)Google Scholar
  91. 91.
    Ping, E.P., Hudha, K., Harun, M.H.B., Jamaluddin, H.: Hardware-in-the-loop simulation of automatic steering control: Outer-loop and inner-loop control design. In: 2010 11th International Conference on Control Automation Robotics & Vision (ICARCV), 7-10 Dec. 2010, pp 964–969 (2010)Google Scholar
  92. 92.
    Bittanti, S., Pavesi, G., Rugarli, M., Savaresi, S.: Compensating the Tracking Error of a Mobile Robot by Online Tuning of a Neural Network. In: Koskinen, A. (ed.) Intelligent Autonomous Vehicles 1995, pp 271–276. Pergamon, Oxford (1995)Google Scholar
  93. 93.
    Yang, X., He, K., Guo, M., Zhang, B.: An intelligent predictive control approach to path tracking problem of autonomous mobile robot. In: 1998 IEEE International Conference on Systems, Man, and Cybernetics, 11-14 Oct 1998, vol. 3304, pp 3301–3306 (1998)Google Scholar
  94. 94.
    Ahmed, S.A., Petrov, M.G.: Trajectory Control of Mobile Robots using Type-2 Fuzzy-Neural PID Controller. IFAC-PapersOnLine 48(24), 138–143 (2015). doi: 10.1016/j.ifacol.2015.12.071 CrossRefGoogle Scholar
  95. 95.
    Gomi, H., Kawato, M.: Neural network control for a closed-loop system using feedback-error-learning. Neural Netw. 6(7), 933–946 (1993)CrossRefGoogle Scholar
  96. 96.
    Benzaoui, M., Chekireb, H., Tadjine, M., Boulkroune, A.: Trajectory tracking with obstacle avoidance of redundant manipulator based on fuzzy inference systems. Neurocomputing 196, 23–30 (2016)CrossRefGoogle Scholar
  97. 97.
    Garcia-Cerezo, A., Ollero, A., Martinez, J.: Design of a robust high-performance fuzzy path tracker for autonomous vehicles. Int. J. Syst. Sci. 27(8), 799–806 (1996)CrossRefMATHGoogle Scholar
  98. 98.
    Cheng, C.-C., Chou, C.-C.. In: Intelligent Computing Systems: First International Symposium, ISICS Fuzzy-Based Visual Servo with Path Planning for a Ball-Plate System, pp 97–107. Mérida, México (2016)Google Scholar
  99. 99.
    Bui, T.L.: Decentralized Motion Control for Omnidirectional Mobile Platform—Tracking a Trajectory Using PD Fuzzy Controller. In: Duy, H.V., Dao, T.T., Zelinka, I., Choi, H. -S., Chadli, M (eds.) AETA 2015: Recent Advances in Electrical Engineering and Related Sciences, pp 803–819. Springer International Publishing, Cham (2016)Google Scholar
  100. 100.
    Ollero, A., Amidi, O.: Predictive Path Tracking of Mobile Robots. Application to the CMU Navlab. In: Proceedings of 5Th International Conference on Advanced Robotics, pp 1081–1086. Robots in Unstructured Environments, ICAR (1991)Google Scholar
  101. 101.
    Tomatsu, T., Nonaka, K., Sekiguchi, K., Suzuki, K.: Model predictive trajectory tracking control for hydraulic excavator on digging operation. In: 2015 IEEE Conference on Control Applications (CCA), 21-23 Sept. 2015, pp 1136–1141 (2015)Google Scholar
  102. 102.
    Yamashita, A.S., Alexandre, P.M., Zanin, A.C., Odloak, D.: Reference trajectory tuning of model predictive control. Control Eng. Pract. 50, 1–11 (2016). doi: 10.1016/j.conengprac.2016.02.003 CrossRefGoogle Scholar
  103. 103.
    Prodan, I., Olaru, S., Fontes, F.A.C.C., Lobo Pereira, F., Borges de Sousa, J., Stoica Maniu, C., Niculescu, S.-I.: Predictive Control for Path-Following. From Trajectory Generation to the Parametrization of the Discrete Tracking Sequences. In: Developments in Model-Based Optimization and Control: Distributed Control and Industrial Applications, pp 161–181. Springer International Publishing, Cham (2015)Google Scholar
  104. 104.
    Beal, C.E.: Applications of MPC to vehicle dynamics for active safety and stability stanford university (2011)Google Scholar
  105. 105.
    Merabti, H., Belarbi, K., Bouchemal, B.: Nonlinear predictive control of a mobile robot: a solution using metaheuristcs. J. Chin. Inst. Eng. 39(3), 282–290 (2016). doi: 10.1080/02533839.2015.1091276 CrossRefGoogle Scholar
  106. 106.
    Xue, T., Li, R., Tokgo, M., Ri, J., Han, G.: Trajectory planning for autonomous mobile robot using a hybrid improved QPSO algorithm. Soft. Comput., 1–17 (2015). doi: 10.1007/s00500-015-1956-2
  107. 107.
    Gerdes, J.C., Hedrick, J.K.: Hysteresis control of nonlinear single-acting actuators as applied to brake/throttle switching. In: Proceedings of the 1999 American Control Conference, 1999, pp 1692–1696. IEEE (1999)Google Scholar
  108. 108.
    Gerdes, J.C., Hedrick, J.K.: Brake system modeling for simulation and control. J. Dyn. Syst. Meas. Contr. 121(3), 496–503 (1999). doi: 10.1115/1.2802501 CrossRefGoogle Scholar
  109. 109.
    Lepej, P., Maurer, J., Uran, S., Steinbauer, G.: Dynamic Arc Fitting Path Follower for Skid-steered Mobile Robots. Int. J. Adv. Rob. Syst., 12 (2015)Google Scholar
  110. 110.
    Zinober, A.S.: Deterministic control of uncertain systems. vol. 40 IET (1990)Google Scholar
  111. 111.
    Liu, J., Wang, X.: Advanced sliding mode control for mechanical systems. Springer (2012)Google Scholar
  112. 112.
    Khalil, H.K., Grizzle, J.: Nonlinear systems, vol. 3. Prentice hall, New Jersey (1996)Google Scholar
  113. 113.
    Solea, R., Cernega, D.: Super twisting sliding mode controller applied to a nonholonomic mobile robot. In: 2015 19th International Conference on System Theory, Control and Computing (ICSTCC), 14-16 Oct. 2015, pp 87–92 (2015)Google Scholar
  114. 114.
    Aithal, H., Janardhanan, S.: Trajectory tracking of two wheeled mobile robot using higher order sliding mode control. In: International Conference on Control Computing Communication & Materials (ICCCCM), 3-4 Aug. 2013, pp 1–4 (2013)Google Scholar
  115. 115.
    Kigezi, T.N., Alexandru, S., Mugabi, E., Musasizi, P.I.: Sliding mode control for tracking of nonholonomic wheeled mobile robots. In: Control Conference (AUCC), 2015 5th Australian, 5-6 Nov. 2015, pp 21–26 (2015)Google Scholar
  116. 116.
    Imine, H., Madani, T.: Sliding-mode control for automated lane guidance of heavy vehicle. Int. J. Robust Nonlinear Control 23(1), 67–76 (2013)MathSciNetCrossRefMATHGoogle Scholar
  117. 117.
    Orchard, M., Carricajo, T., Vallejos, P.: Design and Simulation of Control Strategies for Trajectory Tracking in an Autonomous Ground Vehicle. In: Management and Control of Production and Logistics, vol. 1, pp 118–123 (2013)Google Scholar
  118. 118.
    Canale, M., Fagiano, L., Ferrara, A., Vecchio, C.: Comparing internal model control and sliding-mode approaches for vehicle yaw control. IEEE Trans. Intell. Transp. Syst. 10(1), 31–41 (2009)CrossRefGoogle Scholar
  119. 119.
    Jung-Min, Y., Jong-Hwan, K.: Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans. Robot. Autom. 15(3), 578–587 (1999). doi: 10.1109/70.768190 CrossRefGoogle Scholar
  120. 120.
    Tzafestas, S.G., Deliparaschos, K.M., Moustris, G.P.: Fuzzy logic path tracking control for autonomous non-holonomic mobile robots: Design of System on a Chip. Rob. Autom. Syst. 58(8), 1017–1027 (2010). doi: 10.1016/j.robot.2010.03.014
  121. 121.
    Jia, Z., Balasuriya, A., Challa, S.: Sensor fusion-based visual target tracking for autonomous vehicles with the out-of-sequence measurements solution. Rob. Autom. Syst. 56(2), 157–176 (2008). doi: 10.1016/j.robot.2007.05.014 CrossRefGoogle Scholar
  122. 122.
    Siddique, H.: Driverless cars, drones and spaceport to feature in Queen’s speech. Accessed 16 May 2016 (2016)

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Noor Hafizah Amer
    • 1
    • 2
  • Hairi Zamzuri
    • 2
  • Khisbullah Hudha
    • 1
  • Zulkiffli Abdul Kadir
    • 1
  1. 1.Faculty of EngineeringUniversiti Pertahanan Nasional MalaysiaKuala LumpurMalaysia
  2. 2.Malaysia-Japan International Institute of TechnologyUniversity Technology MalaysiaKuala LumpurMalaysia

Personalised recommendations