Journal of Intelligent & Robotic Systems

, Volume 86, Issue 2, pp 277–289 | Cite as

Distributed Time-Varying Formation Tracking Analysis and Design for Second-Order Multi-Agent Systems

  • Xiwang Dong
  • Jie Xiang
  • Liang Han
  • Qingdong Li
  • Zhang Ren


Distributed time-varying formation tracking analysis and design problems for second-order multi-agent systems with one leader are studied respectively, where the states of followers form a predefined time-varying formation while tracking the state of the leader. Different from the previous results on formation tracking control, the formation for the followers can be described by specified time-varying vectors and the trajectory of the leader can also be time-varying. A distributed formation tracking protocol is constructed using only neighboring relative information. Necessary and sufficient conditions for second-order multi-agent systems with one leader to achieve time-varying formation tracking are proposed by utilizing the properties of the Laplacian matrix, where the formation tracking feasibility constraint is also given. An approach to design the formation tracking protocol is proposed by solving an algebraic Riccati equation. The presented results can be applied to deal with the target enclosing problems and consensus tracking problems for second-order multi-agent systems with one target/leader. An application in the target enclosing of multiple vehicles is provided to demonstrate the effectiveness of the theoretical results.


Formation control Formation tracking Target enclosing Multi-agent system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hurtado, J.E., Robinett, R.D.III, Dohrmann, C.R., Goldsmith, S.Y.: Decentralized control for a swarm of vehicles performing source localization. J. Intell. Syst. 41(1), 1–18 (2004)CrossRefGoogle Scholar
  2. 2.
    Yan, W.S., Fang, X.P., Li, J.B.: Formation optimization for AUV localization with range-dependent measurements noise. IEEE Commun. Lett. 18(9), 1579–1582 (2014)CrossRefGoogle Scholar
  3. 3.
    Han, J.L., Chen, Y.Q.: Multiple UAV formations for cooperative source seeking and contour mapping of a radiative signal field. J. Intell. Robot. Syst. 74(1–2), 323–332 (2014)CrossRefGoogle Scholar
  4. 4.
    Zhu, S.Q., Wang, D.W., Low, C.B.: Cooperative control of multiple UAVs for moving source seeking. J. Intell. Robot. Syst. 74(1), 333–346 (2014)CrossRefGoogle Scholar
  5. 5.
    Okolo, W., Dogan, A., Blake, W.: Effect of trail aircraft trim on optimum location in formation flight. J. Aircr. 52(4), 1201–1213 (2015)CrossRefGoogle Scholar
  6. 6.
    Kothari, M., Sharma, R., Postlethwaite, I., Beard, R.W., Pack, D.: Cooperative target-capturing with incomplete target information. J. Intell. Robot. Syst. 72(3), 373–384 (2013)CrossRefGoogle Scholar
  7. 7.
    Zhang, M.F., Liu, H.H.T.: Cooperative tracking a moving target using multiple fixed-wing UAVs. J. Intell. Robot. Syst.. In: press. doi: 10.1007/s10846-015-0236-9 (2015)
  8. 8.
    Bai, H., Wen, J.T.: Cooperative load transport: a formation-control perspective. IEEE Trans. Robot. 26(4), 742–750 (2010)CrossRefGoogle Scholar
  9. 9.
    Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dong, X.W.: Formation and containment control for high-order linear swarm systems. Springer, Berlin (2015)Google Scholar
  11. 11.
    Ren, W.: Consensus strategies for cooperative control of vehicle formations. IET Contr. Theory Appl. 1(2), 505–512 (2007)CrossRefGoogle Scholar
  12. 12.
    Oh, K.K., Ahn, H.S.: Formation control and network localization via orientation alignment. IEEE Trans. Autom. Control 59(2), 540–545 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lin, Z.Y., Wang, L.L., Han, Z.M., Fu, M.Y.: Distributed formation control of multi-agent systems using complex Laplacian. IEEE Trans. Autom. Control 59(7), 1765–1777 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, C., Xie, G.M., Cao, M.: Forming circle formations of anonymous mobile agents with order preservation. IEEE Trans. Autom. Control 58(12), 3248–3254 (2013)CrossRefGoogle Scholar
  15. 15.
    Hawwary, M.E.: Three-dimensional circular formations via set stabilization. Automatica 54, 374–381 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Antonelli, G., Arrichiello, F., Caccavale, F., Marino, A.: Decentralized time-varying formation control for multi-robot systems. Int. J. Robot. Res.. In: press. doi: 10.1177/0278364913519149(2014)
  17. 17.
    Xie, G.M., Wang, L.: Moving formation convergence of a group of mobile robots via decentralised information feedback. Int. J. Syst. Sci. 40(10), 1019–1027 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Liu, C.L., Tian, Y.P.: Formation control of multi-agent systems with heterogeneous communication delays. Int. J. Syst. Sci. 40(6), 627–636 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Guo, M., Zavlanos, M.M., Dimarogonas, D.V.: Controlling the relative agent motion in multi-agent formation stabilization. IEEE Trans. Autom. Control 59(3), 820–826 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dong, W.J.: Robust formation control of multiple wheeled mobile robots. J. Intell. Robot. Syst. 62 (3), 547–565 (2011)CrossRefMATHGoogle Scholar
  21. 21.
    Dong, X.W., Yu, B.C., Shi, Z.Y., Zhong, Y.S.: Time-varying formation control for unmanned aerial vehicles: Theories and applications. IEEE Trans. Control Syst. Technol. 23(1), 340–348 (2015)CrossRefGoogle Scholar
  22. 22.
    Dong, X.W., Zhou, Y., Ren, Z., Zhong, Y.S.: Time-varying formation control for unmanned aerial vehicles with switching interaction topologies. Control Eng. Practice 46, 26–36 (2016)CrossRefGoogle Scholar
  23. 23.
    Wu, Z.P., Guan, Z.H., Wu, X.Y., Li, T.: Consensus based formation control and trajectory tracing of multi-agent robot systems. J. Intell. Robot. Syst. 48(3), 397–410 (2007)CrossRefGoogle Scholar
  24. 24.
    Ren, W., Sorensen, N.: Distributed coordination architecture for multi-robot formation control. Robot. Auton. Syst. 56(4), 324–333 (2008)CrossRefMATHGoogle Scholar
  25. 25.
    Guo, J., Yan, G.F., Lin, Z.Y.: Local control strategy for moving-target-enclosing under dynamically changing network topology. Syst. Control Lett. 59(10), 654–661 (2010)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Mylvaganam, T., Astolfi, A.: A Differential Game Approach to Formation Control for a Team of Agents with One Leader. In: Proceeding of the American Control Conference (2015)Google Scholar
  27. 27.
    Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive formation tracking control of electrically driven multiple mobile robots. IET Contr. Theory Appl. 4(8), 1489–1500 (2010)CrossRefGoogle Scholar
  28. 28.
    Yoo, S.J., Park, B.S.: Formation tracking control for a class of multiple mobile robots in the presence of unknown skidding and slipping. IET Contr. Theory Appl. 7(5), 635–645 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Guo, W.L., Lv, J.H., Chen, S.H., Yu, X.H.: Second-order tracking control for leaderCfollower multi-agent flocking in directed graphs with switching topology. Syst. Control Lett. 60(12), 1051–1058 (2011)CrossRefMATHGoogle Scholar
  30. 30.
    Hong, Y.G., Chen, G.R., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks. Automatica 44(3), 846–850 (2008)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Ma, C.Q., Zhang, J.F.: Necessary and sufficient conditions for consensusability of linear multi-agent systems. IEEE Trans. Autom. Control 55(5), 1263–1268 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Li, Z.K., Duan, Z.S., Chen, G.R., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. I-Regul. Pap. 57(1), 213–224 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)CrossRefMATHGoogle Scholar
  34. 34.
    Shi, J.T., He, X., Wang, Z.D., Zhou, D.H.: Iterative consensus for a class of second-order multi-agent systems. J. Intell. Robot. Syst. 73(1), 655–664 (2014)CrossRefGoogle Scholar
  35. 35.
    Meng, Z.Y., Ren, W., You, Z.: Distributed finite-time attitude containment control for multiple rigid bodies. Automatica 46(12), 2092–2099 (2010)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Zahreddine, Z., El-Shehawey, E.F.: On the stability of a system of differential equations with complex coefficients. Indian. J. Pure Appl. Math. 19(10), 963–972 (1988)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Xiwang Dong
    • 1
  • Jie Xiang
    • 1
  • Liang Han
    • 1
  • Qingdong Li
    • 1
  • Zhang Ren
    • 1
  1. 1.School of Automation Science and Electrical Engineering, Science and Technology on Aircraft Control LaboratoryBeihang UniversityBeijingPeople’s Republic of China

Personalised recommendations