Skip to main content
Log in

Stability Analysis of a Human Arm Interacting with a Force Augmenting Device

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a stability analysis of the interaction between a human and a linear moving Force Augmenting Device (FAD). The analysis employs a mathematical model of the human arm, the FAD and their interaction. As a depart from past works, this article presents a stability analysis considering time-delays in the human model. A key ingredient in the analysis is the use of the Rekasius substitution for replacing the time-delay terms. It is proved that the human machine interaction is stable when the human model has no delays. When delays are considered in the human model, the analysis provides an upper bound for the time-delays preserving a stable interaction. Numerical simulations allow to assess the human-FAD interaction. An experiment is performed with a laboratory prototype, where a human operator lifts a load. It is observed that the human machine interaction is stable and the human operator is able to move the load to a desired position by experiencing very little effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Guizzo, E., Goldstein, H.: The rise of the body bots [robotic exoskeletons]. IEEE Spectrum. 42 (10), 50–56 (2005)

    Article  Google Scholar 

  2. Kim, W., Lee, S., Lee, H., Yu, S., Han, J., Han, C.: Development of the heavy load transferring task oriented exoskeleton adapted by lower extremity using qausi-active joints. In: ICCAS-SICE, 2009, pp. 1353–1358. IEEE (2009)

  3. Snyder, T.J., Kazerooni, H.: A novel material handling system. In: 1996 IEEE International Conference on Robotics and Automation, 1996. Proceedings., vol. 2, pp. 1147–1152. IEEE (1996)

  4. Specialty Materials Handling Products Operation. Hardiman 1 prototype project. Technical report, General Electric Company, Schenectady, New York 12305, December 1969

  5. Kazerooni, H.: Human machine interaction via the transfer of power and information signals. In: ASME Winter Annual Meeting (1988)

    Book  Google Scholar 

  6. Kazerooni, H.: Human-robot interaction via the transfer of power and information signals. IEEE Trans. Syst. Man Cybern. 20(2), 450–463 (1990)

    Article  Google Scholar 

  7. Lee, S., Sankai, Y.: Power assist control for leg with hal-3 based on virtual torque and impedance adjustment. In: 2002 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 6–pp. IEEE (2002)

  8. Yamamoto, K., Hyodo, K., Ishii, M., Matsuo, T.: Development of power assisting suit for assisting nurse labor. JSME Int. J. Series C 45(3), 703–711 (2002)

    Article  Google Scholar 

  9. Kazerooni, H: The Berkeley lower extremity exoskeleton. In: Field and Service Robotics, pp. 9–15. Springer (2006)

  10. Kong, K., Tomizuka, M.: Control of exoskeletons inspired by fictitious gain in human model. IEEE/ASME Trans. Mechatron. 14(6), 689–698 (2009)

    Article  Google Scholar 

  11. Merton, P A: Speculations on the servo-control of movement. In: Ciba Foundation Symposium-The Spinal Cord, pp. 247–260. Wiley Online Library (1953)

  12. McIntyre, J., Bizzi, E.: Servo hypotheses for the biological control of movement. J. Motor Behav. 25(3), 193–202 (1993)

    Article  Google Scholar 

  13. Schweighofer, N., Arbib, M.A., Kawato, M.: Role of the cerebellum in reaching movements in humans. i. distributed inverse dynamics control. Eur. J. Neurosci. 10(1), 86–94 (1998)

    Article  Google Scholar 

  14. Schweighofer, N., Spoelstra, J., Arbib, M.A., Kawato, M.: Role of the cerebellum in reaching movements in humans. ii. a neural model of the intermediate cerebellum. Eur. J. Neurosci. 10(1), 95–105 (1998)

    Article  Google Scholar 

  15. Oshima, T., Fujikawa, T., Kameyama, O., Kumamoto, M.: Robotic analyses of output force distribution developed by human limbs. In: 9th IEEE International Workshop on Robot and Human Interactive Communication, 2000. RO-MAN 2000. Proceedings, pp. 229–234. IEEE (2000)

  16. Gadi, S. K., Lozano, R., Garrido, R., Osorio, A.: Stability analysis and experiments for a force augmenting device. In: 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2012, pp. 1–6 (2012)

  17. Gadi, S. K, Garrido, R. A, Lozano, R., Osorio, A.: Stability analysis for a force augmenting device considering delays in the human model. In: ASME 2013 International Mechanical Engineering Congress and Exposition, pages V012T13A067–V012T13A067. American Society of Mechanical Engineers (2013)

  18. Latash, M L, Gottlieb, G L: Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements. Neuroscience 43(2–3), 697–712 (1991)

    Article  Google Scholar 

  19. Gadi, S. K.: Modelado y control de un dispositivo de aumento de fuerza. PhD thesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 5 (2014)

  20. Olgac, N., Sipahi, R.: The direct method for stability analysis of time delayed LTI systems. In: American Control Conference, 2003. Proceedings of the 2003, vol. 1, pp. 869–874. IEEE (2003)

  21. Rekasius, Z V: A stability test for systems with delays. In: Proceedings of the Joint Automatic Control Conference, San Francisco, CA, paper TP9-A (1980)

  22. Ebenbauer, C., Allgöwer, F: Stability analysis for time-delay systems using rekasius’s substitution and sum of squares. In: 45th IEEE Conference on Decision and Control, pp. 5376–5381. IEEE (2006)

  23. Pataky, T.C., Latash, M.L., Zatsiorsky, V.M.: Viscoelastic response of the finger pad to incremental tangential displacements. J. Biomech. 38(7), 1441–1449 (2005)

    Article  Google Scholar 

  24. Michiels, W., Niculescu, S.I: Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach. Advances in Design and Control. Society for Industrial and Applied Mathematics (2008)

  25. Neimark, J.: D-subdivisions and spaces of quasipolynomials. Prikladnaya Matematika i Mekhanika 13, 349–380 (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh K. Gadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadi, S.K., Osorio-Cordero, A., Lozano-Leal, R. et al. Stability Analysis of a Human Arm Interacting with a Force Augmenting Device. J Intell Robot Syst 86, 215–224 (2017). https://doi.org/10.1007/s10846-016-0420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0420-6

Keywords

Navigation