Journal of Intelligent & Robotic Systems

, Volume 86, Issue 2, pp 215–224 | Cite as

Stability Analysis of a Human Arm Interacting with a Force Augmenting Device

  • Suresh K. Gadi
  • Antonio Osorio-Cordero
  • Rogelio Lozano-Leal
  • Ruben A. Garrido
Article
  • 133 Downloads

Abstract

This paper presents a stability analysis of the interaction between a human and a linear moving Force Augmenting Device (FAD). The analysis employs a mathematical model of the human arm, the FAD and their interaction. As a depart from past works, this article presents a stability analysis considering time-delays in the human model. A key ingredient in the analysis is the use of the Rekasius substitution for replacing the time-delay terms. It is proved that the human machine interaction is stable when the human model has no delays. When delays are considered in the human model, the analysis provides an upper bound for the time-delays preserving a stable interaction. Numerical simulations allow to assess the human-FAD interaction. An experiment is performed with a laboratory prototype, where a human operator lifts a load. It is observed that the human machine interaction is stable and the human operator is able to move the load to a desired position by experiencing very little effort.

Keywords

Delayed system Force augmenting device Stability analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guizzo, E., Goldstein, H.: The rise of the body bots [robotic exoskeletons]. IEEE Spectrum. 42 (10), 50–56 (2005)CrossRefGoogle Scholar
  2. 2.
    Kim, W., Lee, S., Lee, H., Yu, S., Han, J., Han, C.: Development of the heavy load transferring task oriented exoskeleton adapted by lower extremity using qausi-active joints. In: ICCAS-SICE, 2009, pp. 1353–1358. IEEE (2009)Google Scholar
  3. 3.
    Snyder, T.J., Kazerooni, H.: A novel material handling system. In: 1996 IEEE International Conference on Robotics and Automation, 1996. Proceedings., vol. 2, pp. 1147–1152. IEEE (1996)Google Scholar
  4. 4.
    Specialty Materials Handling Products Operation. Hardiman 1 prototype project. Technical report, General Electric Company, Schenectady, New York 12305, December 1969Google Scholar
  5. 5.
    Kazerooni, H.: Human machine interaction via the transfer of power and information signals. In: ASME Winter Annual Meeting (1988)CrossRefGoogle Scholar
  6. 6.
    Kazerooni, H.: Human-robot interaction via the transfer of power and information signals. IEEE Trans. Syst. Man Cybern. 20(2), 450–463 (1990)CrossRefGoogle Scholar
  7. 7.
    Lee, S., Sankai, Y.: Power assist control for leg with hal-3 based on virtual torque and impedance adjustment. In: 2002 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 6–pp. IEEE (2002)Google Scholar
  8. 8.
    Yamamoto, K., Hyodo, K., Ishii, M., Matsuo, T.: Development of power assisting suit for assisting nurse labor. JSME Int. J. Series C 45(3), 703–711 (2002)CrossRefGoogle Scholar
  9. 9.
    Kazerooni, H: The Berkeley lower extremity exoskeleton. In: Field and Service Robotics, pp. 9–15. Springer (2006)Google Scholar
  10. 10.
    Kong, K., Tomizuka, M.: Control of exoskeletons inspired by fictitious gain in human model. IEEE/ASME Trans. Mechatron. 14(6), 689–698 (2009)CrossRefGoogle Scholar
  11. 11.
    Merton, P A: Speculations on the servo-control of movement. In: Ciba Foundation Symposium-The Spinal Cord, pp. 247–260. Wiley Online Library (1953)Google Scholar
  12. 12.
    McIntyre, J., Bizzi, E.: Servo hypotheses for the biological control of movement. J. Motor Behav. 25(3), 193–202 (1993)CrossRefGoogle Scholar
  13. 13.
    Schweighofer, N., Arbib, M.A., Kawato, M.: Role of the cerebellum in reaching movements in humans. i. distributed inverse dynamics control. Eur. J. Neurosci. 10(1), 86–94 (1998)CrossRefGoogle Scholar
  14. 14.
    Schweighofer, N., Spoelstra, J., Arbib, M.A., Kawato, M.: Role of the cerebellum in reaching movements in humans. ii. a neural model of the intermediate cerebellum. Eur. J. Neurosci. 10(1), 95–105 (1998)CrossRefGoogle Scholar
  15. 15.
    Oshima, T., Fujikawa, T., Kameyama, O., Kumamoto, M.: Robotic analyses of output force distribution developed by human limbs. In: 9th IEEE International Workshop on Robot and Human Interactive Communication, 2000. RO-MAN 2000. Proceedings, pp. 229–234. IEEE (2000)Google Scholar
  16. 16.
    Gadi, S. K., Lozano, R., Garrido, R., Osorio, A.: Stability analysis and experiments for a force augmenting device. In: 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2012, pp. 1–6 (2012)Google Scholar
  17. 17.
    Gadi, S. K, Garrido, R. A, Lozano, R., Osorio, A.: Stability analysis for a force augmenting device considering delays in the human model. In: ASME 2013 International Mechanical Engineering Congress and Exposition, pages V012T13A067–V012T13A067. American Society of Mechanical Engineers (2013)Google Scholar
  18. 18.
    Latash, M L, Gottlieb, G L: Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements. Neuroscience 43(2–3), 697–712 (1991)CrossRefGoogle Scholar
  19. 19.
    Gadi, S. K.: Modelado y control de un dispositivo de aumento de fuerza. PhD thesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 5 (2014)Google Scholar
  20. 20.
    Olgac, N., Sipahi, R.: The direct method for stability analysis of time delayed LTI systems. In: American Control Conference, 2003. Proceedings of the 2003, vol. 1, pp. 869–874. IEEE (2003)Google Scholar
  21. 21.
    Rekasius, Z V: A stability test for systems with delays. In: Proceedings of the Joint Automatic Control Conference, San Francisco, CA, paper TP9-A (1980)Google Scholar
  22. 22.
    Ebenbauer, C., Allgöwer, F: Stability analysis for time-delay systems using rekasius’s substitution and sum of squares. In: 45th IEEE Conference on Decision and Control, pp. 5376–5381. IEEE (2006)Google Scholar
  23. 23.
    Pataky, T.C., Latash, M.L., Zatsiorsky, V.M.: Viscoelastic response of the finger pad to incremental tangential displacements. J. Biomech. 38(7), 1441–1449 (2005)CrossRefGoogle Scholar
  24. 24.
    Michiels, W., Niculescu, S.I: Stability and Stabilization of Time-Delay Systems: An Eigenvalue-Based Approach. Advances in Design and Control. Society for Industrial and Applied Mathematics (2008)Google Scholar
  25. 25.
    Neimark, J.: D-subdivisions and spaces of quasipolynomials. Prikladnaya Matematika i Mekhanika 13, 349–380 (1949)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.FIMEUniversidad Autónoma de CoahuilaTorreónMexico
  2. 2.UMI-LAFMIA, CINVESTAV-CNRSMexico CityMexico
  3. 3.Sorbonne Universités, UTC, Heudiasyc UMR 7253ParisFrance
  4. 4.Departamento de Control AutomáticoCINVESTAVMexico CityMexico

Personalised recommendations