Journal of Intelligent & Robotic Systems

, Volume 86, Issue 2, pp 199–211 | Cite as

Optimal Capture of a Tumbling Object in Orbit Using a Space Manipulator



This paper introduces an optimal capture strategy for a manipulator based on a servicing spacecraft to approach an arbitrarily rotating object, such as a malfunctioning satellite or a piece of orbital debris, for capturing with minimal impact to the robot’s base spacecraft. The method consists of two steps. The first step is to determine an optimal future time and the target object’s corresponding motion state for the robot to capture the tumbling object, so that, at the time when the gripper of the robot intercepts the target the very first instant, the resulting impact or disturbance to the attitude of the base spacecraft will be minimal. The second step is to control the robot to reach the tumbling object at the predicted optimal time along an optimal trajectory. The optimal control problem is solved with random uncertainties in the initial and final boundary conditions. Uncertainties are introduced because sensor and estimation errors inevitably exist in the first step, i.e., determination process of the initial and final boundary conditions. The application of the method is demonstrated using a dynamics simulation example.


Space robot Optimal control Capture Tumbling target Tumbling object Minimal impact Uncertainties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of robotics technologies for on-orbit services. Progr. Aerospace Sci. 68, 1–26 (2014)CrossRefGoogle Scholar
  2. 2.
    Wee, L., Walker, M.W.: On the dynamics of contact between space robots and configuration control for impact minimization. IEEE Trans. Robot. Autom. 9(5), 581–591 (1993)CrossRefGoogle Scholar
  3. 3.
    Yoshida, K., Nenchev, D.N.: Space robot impact analysis and satellite-base impulse minimization using reaction null-space. In: IEEE International Conference on Robotics and Automation, pp. 1271–1277. Nagoya (1995)Google Scholar
  4. 4.
    Papadopoulos, E., Paraskevas, I.: Design and configuration control of space robots undergoing impacts. In: 6th International ESA Conference on Guidance, Navigation and Control Systems, pp. 17–20. Loutraki (2005)Google Scholar
  5. 5.
    Huang, P., Xu, Y. S., Liang, B.: Contac and impact dynamics of space manipulators and free-flying target. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 382–337. Edmonton (2005)Google Scholar
  6. 6.
    Huang, P., Yuan, J., Xu, Y., Liu, R.: Approach trajectory planning of space robot for impact minimization. In: IEEE International Conference on Information Acquisition, pp. 382–387. Weihai (2006)Google Scholar
  7. 7.
    Huang, P., Liang, B., Xu, Y.S.: Configuration control of space robots for impact minimization. In: IEEE International Conference on Robotics and Biomimetics, pp. 357–362. Kunming (2006)Google Scholar
  8. 8.
    Dubowsky, S., Torres, M.: Path planning for space manipulators to minimize spacecraft attitude disturbances. In: IEEE International Conference on Robotics and Automation, pp. 2522–2528. Sacramento (1991)Google Scholar
  9. 9.
    Agrawal, O.P., Xu, Y.: On the global optimum path planning for redundant space manipulators. IEEE Trans. Syst. Man Cybern., 1306–1316 (1994)Google Scholar
  10. 10.
    Papadopoulos, E., Abu-Abed, A.: Design and motion planning for a zero-reaction manipulator. In: IEEE International Conference on Robotics and Automation, pp. 1554–1559. San Diego (1994)Google Scholar
  11. 11.
    Lampariello, R., Agrawal, S., Hirzinger, H.: Optimal motion planning for free-flying robots. In: IEEE International Conference on Robotics and Automation, pp. 3029–3035. Taipei (2003)Google Scholar
  12. 12.
    Aghili, F.: Optimal control for robotic capturing and passivation of a tumbling satellite with unknown dynamics. In: AIAA Guidance Navigation and Control Conference, pp. 1–21. Honolulu (2008)Google Scholar
  13. 13.
    Oki, T., Nakanishi, H, Yoshida, K.: Time-optimal manipulator control of a free-floating space robot with constraint on reaction torque. In: IEEE International Conference on Intelligent Robots and Systems, pp. 2828–2833. Nice (2008)Google Scholar
  14. 14.
    Walker, M.W., Wee, L.-B.: Adaptive control of space-based robot manipulators. IEEE Trans. Robot. Autom. 7(4), 828–835 (1991)CrossRefGoogle Scholar
  15. 15.
    Abiko, S., Hirzinger, G.: Adaptive control for a torque controlled free-floating space robot with kinematic and dynamic model uncertainty. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2359–2364 (2009)Google Scholar
  16. 16.
    Wang, H.: On adaptive inverse dynamics for free-floating space manipulators. Robot. Autonom. Syst. 59(8), 782–788 (2011)CrossRefGoogle Scholar
  17. 17.
    Xu, Y., You-Liang, G., Wu, Y., Sclabassi, R.: Robust control of free-floating space robot systems. Int. J. Control 61(2), 261–277 (1995)CrossRefMATHGoogle Scholar
  18. 18.
    Pazelli, T.F., Terra, M.H., Siqueira, A.A.: Experimental investigation on adaptive robust controller designs applied to a free-floating space manipulator. Control Eng. Pract. 19(4), 395–408 (2011)CrossRefGoogle Scholar
  19. 19.
    Xu, G., Zhang, M., Wang, H.: Robust controller design for one arm space manipulator with uncertainties compensated. Lecture Notes Electr. Eng. Inf. Control Autom. Robot. Springer 133(2), 59–66 (2012)Google Scholar
  20. 20.
    Chen, Z., Chen, L.: Robust adaptive composite control of space-based robot system with uncertain parameters and external disturbances. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2353–2358 (2009)Google Scholar
  21. 21.
    Aghili, F.: A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics. IEEE Trans. Robot. Autom. 28(3), 634–649 (2012)CrossRefGoogle Scholar
  22. 22.
    Ma, O., Flores-Abad, A., Phan, K.: Control of a space robot for capturing a tumbling object international symposium on artificial intelligence. In: Robotics and Automation in Space. Turin (2012)Google Scholar
  23. 23.
    Flores-Abad, A., Wie, Z., Ma, O., Phan, K.: Optimal control of space robots for capturing a tumbling object with uncertainties. J. Guid. Control Dyn. 37(6), 1–4 (2014)CrossRefGoogle Scholar
  24. 24.
    Nanos, K., Papadopoulos, E.: On the use of free-floating space robots in the presence of angular momentum. Intel. Serv. Robot. 4(1), 3–15 (2011)CrossRefGoogle Scholar
  25. 25.
    Masutani, Y., Iwatsu, T., Miyazaki, F.: Motion estimation of unknown rigid body under no external forces and moments. In: IEEE International Conference on Robotics and Automation, pp. 1066–1072. San Diego (1994)Google Scholar
  26. 26.
    Xu, W., Liang, B., Li, C., Liu, Y., Xu, Y.: Autonomous target capturing of free-floating space robot: Theory and experiments. Robotica 27, 425–445 (2009)CrossRefGoogle Scholar
  27. 27.
    Aghili, F., Kuryllo, M., Okouneva, G., English, C.: Fault-tolerant position/attitude estimation of free-floating space objects using a laser range sensor. IEEE Sensors J. 11(1), 176–185 (2011)CrossRefGoogle Scholar
  28. 28.
    Petit, A., Marchand, E., Kanani, K.: Tracking complex targets for space rendezvous and debris removal applications. IEEE/RSJ Int. Conf. Intel. Robots Syst., 4483–4488 (2012)Google Scholar
  29. 29.
    Xu, Y., Kanade, T. (eds.): Space Robotics: Dynamics and Control. Kluwer Academic Publishers (1993)Google Scholar
  30. 30.
    Shah, S.V., Saha, S.K., Dutt, J.K.: Dynamics of tree-type robotic systems. In: Intelligent Systems, Control and Automation: Science and Engineering Bookseries. Springer, [cited September 17 2016.] (2013)
  31. 31.
    Hanßmann, H.: Quasi-periodic motion of a rigid body under weak forces. In: Hamiltonian Systems with Three or More Degrees of Freedom, pp. 398–402. Springer Netherlands (1999)Google Scholar
  32. 32.
    Kuang, J., Tan, S., Arichandran, K., Leung, A.Y.T.: Chaotic attitude motion of gyrostat satellite via Melnikov method. Int. J. Bifur. Chaos 11(05), 1233–1260 (2001)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Masteron-Gibbons, M.: A Primer of the Calculus of Variation and Optimal Control Theory. American Mathematical Society, USA (2009)Google Scholar
  34. 34.
    Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice: Interdisciplinary Statistics. Chapman and Hall/CRC, London (1996)MATHGoogle Scholar
  35. 35.
    Espero, M.T.: Future Space Robotics and Large Optical Systems: A Picture of Orbital Express. Ares V Workshop, California (2008)Google Scholar
  36. 36.
    Rutquist, P.E., Edvall, M.M.: Propt-Matlab Optimal Control Software. Tomlab Optimization Inc (2010)Google Scholar
  37. 37.
    Neal, R.M.: Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation. Learn. Graph. Models Springer 89, 205–228 (1998)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentUniversity of Texas at El PasoEl PasoUSA
  2. 2.Department of Mechanical and Aerospace EngineeringNew Mexico State UniversityLas CrucesUSA
  3. 3.Department of Mathematics and StatisticsUniversity of Massachusetts AmherstAmherstUSA

Personalised recommendations