Journal of Intelligent & Robotic Systems

, Volume 85, Issue 3–4, pp 597–611 | Cite as

Nonlinear and Adaptive Suboptimal Control of Connected Vehicles: A Global Adaptive Dynamic Programming Approach



This paper studies the cooperative adaptive cruise control (CACC) problem of connected vehicles with unknown nonlinear dynamics. Different from the present literature on CACC, data-driven feedforward and optimal feedback control policies are developed by global adaptive dynamic programming (GADP). Due to the presence of nonvanishing disturbance, a modified version of GADP is presented. Interestingly, the developed policy is guaranteed to globally stabilize the vehicular platoon system, and is robust to unmeasurable nonvanishing disturbance. Numerical simulation results are presented to validate the effectiveness of the developed approach.


Adaptive dynamic programming (ADP) Nonlinear optimal control Connected vehicles Cooperative adaptive cruise control (CACC) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angeli, D., Sontag, E.D.: Forward completeness, unboundedness observability, and their Lyapunov characterizations. Syst. Control Lett. 38(4-5), 209–217 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bamieh, B., Paganini, F., Dahleh, M.A.: Distributed control of spatially invariant systems. IEEE Trans. Autom. Control 47(7), 1091–1107 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Desjardins, C., Chaib-draa, B.: Cooperative adaptive cruise control: A reinforcement learning approach. IEEE Trans. Intell. Transp. Syst. 12(4), 1248–1260 (2011)CrossRefGoogle Scholar
  4. 4.
    Gao, W., Huang, M., Jiang, Z.P., Chai, T.: Sampled data-based adaptive optimal output-feedback control of a 2-DOF helicopter IET Control Theory and Applications (2016). doi: 10.1049/iet-cta.2015.0977
  5. 5.
    Gao, W., Jiang, Y., Jiang, Z.P., Chai, T.: Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming. Automatica (2016). doi: 10.1016/j.automatica.2016.05.008
  6. 6.
    Gao, W., Jiang, Z.P.: Adaptive dynamic programming and adaptive optimal output regulation of linear systems. IEEE Trans. Autom. Control (2016). doi: 10.1109/TAC.2016.2548662
  7. 7.
    Gao, W., Jiang, Z.P., Ozbay, K.: Adaptive Optimal Control of Connected Vehicles. In: proceedings of the 10Th International Workshop on Robot Motion and Control, Pages 288–293, Poznan, Poland (2015)Google Scholar
  8. 8.
    Ge, J.I., Orosz, G.: Optimal Control of Connected Vehicle Systems. In: proceedings of the 53Rd IEEE Conference on Decision and Control, Pages 4107–4112, Los Angeles, CA (2014)Google Scholar
  9. 9.
    Horowitz, R., Varaiya, P.: Control design of an automated highway system. Proc. IEEE 88(7), 913–925 (2000)CrossRefGoogle Scholar
  10. 10.
    Ioannou, P.A., Chien, C.C.: Autonomous intelligent cruise control. IEEE Trans. Veh. Technol. 42(4), 657–672 (1993)CrossRefGoogle Scholar
  11. 11.
    Ioannou, P.A., Stefanovic, M.: Evaluation of ACC vehicles in mixed traffic: lane change effects and sensitivity analysis. IEEE Trans. Intell. Transp. Syst. 6(1), 79–89 (2005)CrossRefGoogle Scholar
  12. 12.
    Ioannou, P.A., Sun, J.: Robust Adaptive Control. Dover Publications, inc, mineola, NY (2012)MATHGoogle Scholar
  13. 13.
    Jiang, Y., Jiang, Z.P.: Robust adaptive dynamic programming and feedback stabilization of nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems 25(5), 882–893 (2014)CrossRefGoogle Scholar
  14. 14.
    Jiang, Y., Jiang, Z.P.: Global adaptive dynamic programming for continuous-time nonlinear systems. IEEE Trans. Autom. Control 60(11), 2917–2929 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jiang, Z.P., Jiang, Y.: Robust adaptive dynamic programming for linear and nonlinear systems: an overview. Eur. J. Control. 19(5), 417–425 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jovanovic, M.R., Bamieh, B.: On the ill-posedness of certain vehicular platoon control problems. IEEE Trans. Autom. Control 50(9), 1307–1321 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kamalapurkar, R., Dinh, H., Bhasin, S., Dixon, W.E.: Approximate optimal trajectory tracking for continuous-time nonlinear systems. Automatica 51, 40–48 (2015)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kim, S.G., Tomizuka, M., Cheng, K.H.: Smooth motion control of the adaptive cruise control system by a virtual lead vehicle. Int. J. Automot. Technol. 13(1), 77–85 (2012)CrossRefGoogle Scholar
  19. 19.
    Kwon, J.-W., Chwa, D.: Adaptive bidirectional platoon control using a coupled sliding mode control method. IEEE Trans. Intell. Transp. Syst. 15(5), 2040–2048 (2014)CrossRefGoogle Scholar
  20. 20.
    Lewis, F.L., Vamvoudakis, K.G.: Reinforcement learning for partially observable dynamic processes Adaptive dynamic programming using measured output data. IEEE Trans. Syst. Man Cybern. B Cybern. 41(1), 14–25 (2011)CrossRefGoogle Scholar
  21. 21.
    Lewis, F.L., Vrabie, D.: Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst. Mag. 9(3), 32–50 (2009)CrossRefGoogle Scholar
  22. 22.
    Lewis, F.L., Vrabie, D., Vamvoudakis, K.: Reinforcement learning and feedback control: Using natural decision methods to design optimal adaptive controllers. IEEE Control. Syst. Mag. 32(6), 76–105 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Liu, T., Lu, X., Jiang, Z.P.: A junction-by-junction feedback-based strategy with convergence analysis for dynamic traffic assignment. Science China Information Sciences 59(1), 1–17 (2016)Google Scholar
  24. 24.
    Oncu, S., Ploeg, J., van de Wouw, N., Nijmeijer, H.: Cooperative adaptive cruise control: Network-aware analysis of string stability. IEEE Trans. Intell. Transp. Syst. 15(4), 1527–1537 (2014)CrossRefGoogle Scholar
  25. 25.
    Ploeg, J., van de Wouw, N., Nijmeijer, H.: ℒp string stability of cascaded systems Application to vehicle platooning. IEEE Trans. Control Syst. Technol. 22(2), 786–793 (2014)CrossRefGoogle Scholar
  26. 26.
    Prajna, S., Papachristodoulou, A., Wu, F.: Nonlinear control synthesis by sum of squares optimization A Lyapunov-based approach. In: Asian Control Conference,volume 1, pp 157–165 (2004)Google Scholar
  27. 27.
    Saridis, G.N., Lee, C.-S.G.: An approximation theory of optimal control for trainable manipulators. IEEE Trans. Syst. Man Cybern. 9(3), 152–159 (1979)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Stankovic, S.S., Stanojevic, M.J., Siljak, D.D.: Decentralized overlapping control of a platoon of vehicles. IEEE Trans. Control Syst. Technol. 8(5), 816–832 (2000)CrossRefGoogle Scholar
  29. 29.
    Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press, Cambridge MA (1998)Google Scholar
  30. 30.
    Swaroop, D., Hedrick, J.K., Choi, S.B.: Direct adaptive longitudinal control of vehicle platoons. IEEE Trans. Veh. Technol. 50(1), 150–161 (2001)CrossRefGoogle Scholar
  31. 31.
    Vamvoudakis, K.G.: Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems. IEEE/CAA Journal of Automatica Sinica 3, 282–293 (2014)Google Scholar
  32. 32.
    van Arem, B., van Driel, C., Visser, R.: The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Trans. Intell. Transp. Syst. 7(4), 429–436 (2006)CrossRefGoogle Scholar
  33. 33.
    Xiao, L., Gao, F.: A comprehensive review of the development of adaptive cruise control systems. Veh. Syst. Dyn. 48(10), 1167–1192 (2010)CrossRefGoogle Scholar
  34. 34.
    Xu, J., Xie, L., Wang, Y.: Simultaneous stabilization and robust control of polynomial nonlinear systems using SOS techniques. IEEE Trans. Autom. Control 54(8), 1892–1897 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringTandon School of Engineering, New York UniversityBrooklynUSA

Personalised recommendations