Journal of Intelligent & Robotic Systems

, Volume 84, Issue 1–4, pp 493–509 | Cite as

Architecture for the Automatic Generation of Plans for Multiple UAS from a Generic Mission Description

  • Jorge Muñoz-Morera
  • Ivan Maza
  • Fernando Caballero
  • Anibal Ollero


A planning approach for a platform composed of multiple unmanned aerial systems is presented in this paper. The research activities are focused on the interoperability, task allocation and task planning problems within the system. In order to tackle with the interoperability problem between the vehicles of the platform and other external systems, C-BML has been chosen as the standard language to formalize the description of the missions. Regarding the planning problems involved, several planners have been applied to solve them: a task allocation planner to create an initial assignment of tasks to vehicles, a symbolic planner for high-level reasoning and tools for geometric reasoning. The main contribution of the paper is the use of consolidated task planning techniques to automatically generate low-level plans from a mission described in C-BML, filling the gap between interoperability and automatic plan generation for missions where multiple heterogeneous aerial platforms are involved. The approach has been tested in missions involving multiple surveillance and 3D map generation tasks and the paper includes experimental results.


Symbolic planning Task planning Task allocation Multiple UAS Interoperability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bacchus, F., Kabanza, F., Sherbrooke, U.D.: Using temporal logics to express search control knowledge for planning. Artif. Intell. 116, 2000 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cambon, S., Alami, R., Gravot, F.: A hybrid approach to intricate motion, manipulation and task planning. Int. J. Robot. Res. 28(1), 104–126 (2009). doi: 10.1177/0278364908097884. CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Wah, B.W., wei Hsu, C.: Temporal planning using subgoal partitioning and resolution in SGPlan. J. Artif. Intell. Res. 26, 369 (2006)MATHGoogle Scholar
  4. 4.
    Currie, K., Tate, A., Bridge, S.: O-Plan: the open planning architecture (1990)Google Scholar
  5. 5.
    Gerevini, A., Kuter, U., Nau, D., Saetti, A., Waisbrot, N.: Combining domain-independent planning and HTN planning: the duet planner (2008)Google Scholar
  6. 6.
    Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and temporal action graphs. J. Artif. Intell. Res. 20, 239–290 (2003)MATHGoogle Scholar
  7. 7.
    Helmert, M.: The fast downward planning system. J. Artif. Intell. Res., 191–246 (2006)Google Scholar
  8. 8.
    Ingrand, F., Ghallab, M.: Robotics and artificial intelligence: a perspective on deliberation functions. AI Commun. 27(1), 63–80 (2014)MathSciNetGoogle Scholar
  9. 9.
    Kvarnström, J., Doherty, P.: TALPlanner: a temporal logic based forward chaining planner. Ann. Math. Artif. Intell. 30, 2001 (2001)MATHGoogle Scholar
  10. 10.
    Lagriffoul, F., Dimitrov, D., Bidot, J., Saffiotti, A., Karlsson, L.: Efficiently combining task and motion planning using geometric constraints. Int. J. Robot. Res. 33(14), 1726–1747 (2014). doi: 10.1177/0278364914545811. CrossRefGoogle Scholar
  11. 11.
    LaValle, S.M.: Planning algorithms. Available at (2006)
  12. 12.
    Maza, I., Caballero, F., Molina, R., Pena, N., Ollero, A.: Multimodal interface technologies for UAV ground control stations. a comparative analysis. J. Intell. Robot. Syst. 57(1–4), 371–391 (2010). doi: 10.1007/s10846-009-9351-9 CrossRefMATHGoogle Scholar
  13. 13.
    Maza, I., Ollero, A.: Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms Distributed Autonomous Robotic Systems, vol. 6, pp 221–230. Springer, Berlin Heidelberg New York (2007).
  14. 14.
    Nau, D., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: Shop2: an HTN planning system. J. Artif. Intell. Res. 20, 379–404 (2003)MATHGoogle Scholar
  15. 15.
    Perez, D., Maza, I., Caballero, F., Scarlatti, D., Casado, E., Ollero, A.: A ground control station for a multi-UAV surveillance system. J. Intell. Robot. Syst. 69(1–4), 119–130 (2013). doi: 10.1007/s10846-012-9759-5 CrossRefGoogle Scholar
  16. 16.
    Red Hat open source community: OptaPlanner. (2014). Accessed 12 December 2014
  17. 17.
    Rohmer, E., Singh, S., Freese, M.: V-rep: a versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1321–1326 (2013). doi: 10.1109/IROS.2013.6696520
  18. 18.
    Shivashankar, V., Alford, R., Kuter, U., Nau, D.: The GoDeL Planning System: A More Perfect Union of Domain-independent and Hierarchical Planning Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp 2380–2386 (2013).
  19. 19.
    SISO: Standard for: Coalition battle management language (C-BML) phase 1 (2012)Google Scholar
  20. 20.
    Wilkins, D.E.: Practical planning: extending the classical AI planning paradigm. Morgan Kaufmann, San Francisco (1988)Google Scholar
  21. 21.
    Wolfe, J., Marthi, B., Russell, S.J.: Combined task and motion planning for mobile manipulation. Tech. Rep. UCB/EECS-2010-27, EECS Department, University of California, Berkeley. (2010)

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Grupo de Robótica, Visión y ControlUniversidad de SevillaSevillaSpain

Personalised recommendations