Journal of Intelligent & Robotic Systems

, Volume 84, Issue 1–4, pp 53–66 | Cite as

Design and Control of a Single Tilt Tri-Rotor Aerial Vehicle

  • Roman Czyba
  • Grzegorz Szafrański
  • Andrzej Ryś


The aim of this paper is to outline a design process of an attitude control system for unmanned rotorcraft. This small-scale unmanned aerial robot’s concept is based on three rotors and one single tilt mechanism. Final design is consisted of mechanical construction, measurement system including navigation algorithm, as well as control structure and algorithm implementation at the last stage. It is important to underline that high attention was focused on the measurements filtering, estimation of the angular position, and in particular the practical aspects of the control implementation. Furthermore, a PID algorithm including various modified loop structures was studied. On the whole, it is worth to mention that the design, analysis and the validation tests were undertaken on the experimental aerial platform.


VTOL Attitude control system Navigation algorithms Cascade control system AHRS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)CrossRefGoogle Scholar
  2. 2.
    Chiou, J.S., Tran, H.K., Peng, S.T.: Attitude control of a single tilt Tri-rotor UAV system: dynamic modeling and each channel’s nonlinear controllers design. Mathematical Problems in Engineering, vol. 2013. Hindawi Publishing Corporation (2013)Google Scholar
  3. 3.
    Nonami, K., Kendoul, F., Suzuki, S., Wang, W., Nakzawa, D.: Autonomous flying robots, 1st edn. Spirnger, London (2010)CrossRefGoogle Scholar
  4. 4.
    Raptis, I.A., Valavanis, K.P.: Linear and nonlinear control of small-scale unmanned helicopters. Springer, Dordrecht (2011)CrossRefGoogle Scholar
  5. 5.
    Valavanis, K.P.: Advances in unmanned aerial vehicles. Springer, The Netherlands (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Castillo, P., Lozano, R., Dzul, A.E.: Modelling and control of mini-flying machines. Springer, London (2005). ch. 3Google Scholar
  7. 7.
    Hua, M.D., Hamel, T., Morin, P., Samson, C.: Introduction to feedback control of underactuated VTOL vehicles. IEEE Control. Syst. Mag., 61–75 (2013)Google Scholar
  8. 8.
    Bristeau, P.J., Callou, F., Vissiere, D.: The Navigation and Control technology inside the AR.Drone micro UAV. Preprints of the 18th IFAC World Congress, pp. 1477–1484. Milano (2011)Google Scholar
  9. 9.
    Salazar, S., Lozano, R., Escareño, J.: Stabilization and nonlinear control for a novel trirotor mini-aircraft. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 2612–2617, BarcelonaGoogle Scholar
  10. 10.
    Escareño, J., Sanchez, A., Garcia, O., Lozano, R.: Triple tilting rotor mini-UAV: modeling and embedded control of the attitude. American Control Conference, Westin Seattle Hotel, Seattle (2008)Google Scholar
  11. 11.
    Magdwick, S.O.H., Harrison, A.J.L., Vaidyanathan, R.: Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE International Conference on Rehabilitation Robotics, Switzerland (2011)Google Scholar
  12. 12.
    Visioli, A.: Practical PID control. Springer (2006)Google Scholar
  13. 13.
    Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4) (2005)Google Scholar
  14. 14.
    Czyba, R.: Design of attitude control system for an UAV type-quadrotor based on dynamic contraction method, pp 644–649. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore (2009)Google Scholar
  15. 15.
    Wade, H.L.: Basic and advanced regulatory control: system design and application. ISA, USA (2004)Google Scholar
  16. 16.
    Bouabdallah, S., Noth, A., Siegwart, R., PID vs, L Q: control techniques applied to an indoor micro quadrotor. In: Proceedings of international conference on intelligent robots and systems, Japan (2004)Google Scholar
  17. 17.
    Ashokaraj, I., Tsourdos, A., Peter, M.G.S., White, B.A.: A robust approach to multiple sensor based navigation for an aerial robot. In: Proceedings of the 2006 IEEE/RSJ, International conference on intelligent robots and systems, pp 3533–3538, BeijingGoogle Scholar
  18. 18.
    Hua, L.R., Rongqiang, L., Lei, Z.: Filtering algorithm research on MEMS gyroscope data. In: 2008 International conference on computer science and software engineering, pp 186–189, WuhanGoogle Scholar
  19. 19.
    Gary, W., Gary, B.: An introduction to the Kalman filter, July 24 (1006)Google Scholar
  20. 20.
    Batista, P., Silvestre, C., Oliviera, P., Cardeira, B.: Low-cost attitude and heading reference system: filter design and experimental evaluation. In: 2010 IEEE international conference on robotics and automation, pp 2624–2629, USA (2010)Google Scholar
  21. 21.
    Kubelka, V., Reinstein, M.: Complementary filtering approach to orientation estimation using inertial sensors only. In: 2012 IEEE international conference on robotics and automation, pp 599–605, USA (2012)Google Scholar
  22. 22.
    Lee, J.K., Park, E.J., Robinovitch, S.N.: Estimation of attitude and external acceleration using inertial sensor measurement during various dynamic conditions. IEEE Trans. Instrum. Meas. 61(8), 2262–2273 (2012)CrossRefGoogle Scholar
  23. 23.
    Mahony, R., Hamel, T., Pflimlin, J.M.: Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 5, 53 (2008)MathSciNetGoogle Scholar
  24. 24.
    Tsend, S.P., Li, W.L., Sheng, C.Y., Hsu, J.W., Chen, C.S.: Motion and attitude estimation using inertial measurements with complementary filter. In: Proceedings of 2011 8th asian control conference, Taiwan (2011)Google Scholar
  25. 25.
    Yoo, T.S., Hong, S.K., Yoon, H.M., Park, S.: Gain-scheduled complementary filter design for a MEMS based attitude and heading reference system. Sensors 11, 3816–3830 (2011)CrossRefGoogle Scholar
  26. 26.
    Alzu’bi, H., Sababha, B., Alkhatib, B.: Model-based control of a fully autonomous quadrotor UAV. In: AIAA Infotech@Aerospace (I@A) Conference, Paper AIAA-2013-5136, USA (2013)Google Scholar
  27. 27.
    Lin, F., Ang, K.Z.Y., Wang, F., Chen, B.M., Lee, T.H., Yang, B., Dong, M., Dong, X., Cui, J., Hang, S.K., Wang, B., Luo, D., Zhao, S., Yin, M., Li, K., Peng, K., Cai, G.: Development of an unmanned coaxial rotorcraft for the DARPA UAVForge Challenge. Unmanned Systems, vol.1, no. 2, World Scientific Publishing Company, pp. 211–245 (2013)Google Scholar
  28. 28.
    Mohamed, M.K., Lanzon, A.: Design and control of novel Tri-rotor UAV, 304–309Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Roman Czyba
    • 1
  • Grzegorz Szafrański
    • 1
  • Andrzej Ryś
    • 1
  1. 1.Silesian University of TechnologyGliwicePoland

Personalised recommendations