Advertisement

Journal of Intelligent & Robotic Systems

, Volume 84, Issue 1–4, pp 21–35 | Cite as

Self-Healing Control Design under Actuator Fault Occurrence on Single-rotor Unmanned Helicopters

  • Xin Qi
  • Juntong Qi
  • Didier Theilliol
  • Dalei Song
  • Youmin Zhang
  • Jianda Han
Article

Abstract

Actuator faults are inevitable but affect reliability and safety of unmanned helicopters (UHs), especially when there are actuator constraints. In this paper, self-healing control, which is an extended active fault-tolerant control (FTC) method with reference redesign on-line, is proposed to analyze and to guarantee the safety of single-rotor UHs (SUHs) under both actuator faults and constraints. The safety includes body safety and mission safety. More specifically, body safety represents the stability of SUH itself and mission safety represents mission accomplishment with acceptable performance, furthermore, set-point tracking mission is considered. The main contribution of this paper is to analyze and to guarantee the safety of SUHs by solving a set of Linear Matrix Inequalities (LMIs) at one time. The set of LMIs includes saturation compensator design and stability guaranty with a given controller in the absence of actuator constraints, actuator fault compensation analysis, reference reachability analysis and reference redesign. On the other hand, by adding swashplate configuration, SUH model with real actuator outputs as control inputs is constructed which can describe actuator faults more clearly compared to SUH models with nominal control inputs. Finally, the proposed self-healing control method is illustrated by simulation with a nonlinear SUH model.

Keywords

Unmanned helicopter Actuator fault Fault-tolerant control Reference redesign 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cai, G., Chen, B.M., Lee, T.H.: Unmanned Rotorcraft System. Springer, London (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Dardinier-Maron, V., Hamelin, F., Noura, H.: A fault-tolerant control design against major actuator failures: application to a three-tank system. In: Proceedings of the 38th IEEE Conference on Decision and Control. Arizona, vol. 4, pp 3569–3574 (1999)Google Scholar
  3. 3.
    Drozeski, G.R., Saha, B., Vachtsevanos, G.J.: A fault detection and reconfigurable control architecture for unmanned aerial vehicles. In: IEEE Aerospace Conference. Big Sky, MT, pp 1–9 (2005)Google Scholar
  4. 4.
    Enns, R., Si, J.: Helicopter flight-control reconfiguration for main rotor actuator failures. J. Guid. Control. Dyn. 26(4), 572–584 (2003)CrossRefGoogle Scholar
  5. 5.
    Garcia, R.D., Valavanis, K.P., Kandel, A.: Autonomous helicopter navigation during a tail rotor failure utilizing fuzzy logic. In: IEEE Mediterranean Conference on Control and Automation, Athens, Greece, pp 1–6 (2007)Google Scholar
  6. 6.
    He, Y., Han, J.: Acceleration-feedback-enhanced robust control of an unmanned helicopter. J. Guid. Control. Dyn. 33(4), 1236–1250 (2010)CrossRefGoogle Scholar
  7. 7.
    Hu, T., Lin, Z., Qiu, L.: An explicit description of null controllable regions of linear systems with saturating actuators. Syst. Control Lett. 47(1), 65–78 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kapoor, D., Deb, D., Sahai, A.: Adaptive failure compensation for coaxial rotor helicopter under propeller failure. In: American Control Conference, Montreal, Canada, pp 2539–2544 (2012)Google Scholar
  9. 9.
    Khalil, H.K., Grizzle, J.W.: Nonlinear Systems, vol. 3. Prentice Hall, Upper Saddle River (2002)Google Scholar
  10. 10.
    Noura, H., Theilliol, D., Ponsart, J.C., Chamseddine, A.: Fault-tolerant Control Systems: Design and Practical Applications. Advances in Industrial Control. Springer, Dordrecht, Heidelberg, New York (2009)Google Scholar
  11. 11.
    Qi, J., Han, J., Zhao, X.: Adaptive UKF and its application in fault tolerant control of rotorcraft UAV. In: AIAA Guidance, Navigation and Control Conference and Exhibit. South Carolina (2007)Google Scholar
  12. 12.
    Qi, J., Song, D., Wu, C., Han, J., Wang, T.: KF-Based adaptive UKF algorithm and its application for rotorcraft UAV actuator failure estimation. Int. J. Adv. Robot. Syst. 9 (2012)Google Scholar
  13. 13.
    Qi, X., Qi, J., Theilliol, D., Zhang, Y., Han, J., Song, D., H.ua, C.: A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles. J. Intell. Robot. Syst. 73(1–4), 535–555 (2014)CrossRefGoogle Scholar
  14. 14.
    Shim, H.: Hierarchical flight control system synthesis for rotorcraft-based unmanned aerial vehicles. Phd, University of California, Berkeley (2000)Google Scholar
  15. 15.
    da Silva Jr, J.M.G., Tarbouriech, S.: Antiwindup design with guaranteed regions of stability: an LMI-based approach. IEEE Trans. Autom. Control 50(1), 106–111 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    da Silva, J.M.G. Jr, Tarbouriech, S.: Anti-windup design with guaranteed regions of stability for discrete-time linear systems. Syst. Control Lett. 55(3), 184–192 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Tanner, O.: Modelling, identification, and control of autonomous helicopters. Phd, Swiss Federal Institute of Technology Zurich (2003)Google Scholar
  18. 18.
    Theilliol, D., Join, D., Zhang, Y.: Actuator fault tolerant control design based on a reconfigurable reference input. Int. J. Appl. Math. Comput. Sci. 18(4), 553–560 (2008)CrossRefMATHGoogle Scholar
  19. 19.
    Weber, P., Boussaid, B., Khelassi, A., Theilliol, D., Aubrun, C.: Reconfigurable control design with integration of a reference governor and reliability indicatiors. Int. J. Appl. Math. Comput. Sci. 22(1), 139–148 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Zhang, Y., Jiang, J.: Fault tolerant control system design with explicit consideration of performance degradation. IEEE Trans. Aerosp. Electron. Syst. 39(3), 838–848 (2003)CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32(2), 229–252 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Xin Qi
    • 1
    • 3
  • Juntong Qi
    • 2
  • Didier Theilliol
    • 4
    • 5
  • Dalei Song
    • 1
  • Youmin Zhang
    • 6
  • Jianda Han
    • 1
  1. 1.State Key Laboratory of RoboticsShenyang Institute of Automation (SIA), Chinese Academy of Sciences (CAS)ShenyangChina
  2. 2.Tianjin UniversityTianjinChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Faculte des Sciences et TechniquesUniversity of LorraineVandoeuvre-les-NancyFrance
  5. 5.CNRS, CRAN, UMR 7039NancyFrance
  6. 6.Department of Mechanical and Industrial Engineering, Concordia Institute of Aerospace Design and Innovation (CIADI)Concordia UniversityMontréalCanada

Personalised recommendations