HALO4: Horizontal Angle Localization and Orientation System with 4 Receivers and Based on Ultrasounds

  • Santiago Elvira Diaz
  • Angel de Castro Martin
  • Javier Garrido Salas


This paper presents a low cost ultrasonic localization and orientation system based on the DTOA (Differential Time Of Arrival) technique. The proposed system consists in deploying any number of autonomous nodes at the floor of a room and place some transmitters at the ceiling. Each node shall have four ultrasonic receivers to obtain the basic measures for the localization and orientation systems, and the coverage area of the system is defined by any region covered by at least three transmitters. The localization system is based on an estimation process of the horizontal angle of the node with respect to the transmitters. This implementation allows deploying the transmitters at different heights and ignores the error introduced by an incorrect estimation of the ultrasonic signal speed. The computational effort of the proposed system is greater than other ALO (Angle Localization and Orientation) systems, needing a minimization process to obtain the localization results, but it is smaller than in other typical techniques, like those based on the intersection of hyperboloids.


DTOA Location Ultrasonic Angle DOA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saab, S., Nakad, S.: A standalone RFID indoor positioning system using passive tags. IEEE Trans. Ind. Electron. 58(6), 1961–1970 (2011). doi: 10.1109/TIE.2010.2055774 CrossRefGoogle Scholar
  2. 2.
    Han, M., Rhee, S.: Navigation control for a mobile robot. J. Robot. Syst. 11(4), 169–179 (1994)CrossRefMATHGoogle Scholar
  3. 3.
    Chiang, J.-S., Hsu, C.-H., Hsia, H.-W.: A stereo vision-based self-localization system. IEEE Sensors J. 13(6), 1677–1689 (2013). doi: 10.1109/JSEN.2013.2240449 CrossRefGoogle Scholar
  4. 4.
    Moreno, L., Armingol, J.M., Garrido, S, de la Escalera, A., Salichs, M.A.: A genetic algorithm for mobile robot localization using ultrasonic sensor. J. Intell. Robot. Syst. 34(2), 135–154 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Nazlibilek, S.: Autonomous navigation of robotic units in mobile sensor network. Measurement 45(6), 938–949 (2012)CrossRefGoogle Scholar
  6. 6.
    Ward, A., Jones, A., Hopper, A.: A new location technique for the active office. IEEE Pers. Commun. 4(6), 42–47 (1997). doi: 10.1109/98.626982 CrossRefGoogle Scholar
  7. 7.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: Proceedings of the Sixth Annual International Conference on Mobile Computing and Networking, MobiCom, 32–43 (2000)Google Scholar
  8. 8.
    Priyantha, N.B., Miu, A.K., Balakrishnan, H., Teller, S.: The cricket compass for context-aware mobile applications. In: Proceedings of the Seventh Annual International Conference on Mobile Computing and Networking, MobiCom, 1–14 (2001), doi: 10.1145/381677.381679
  9. 9.
    Elvira, S., de Castro, A., Garrido, J.: ALO: An ultrasound system for localization and orientation based on angles. Microelectronics J. 44(10), 959–967 (2013). doi: 10.1016/j.mejo.2013.01.001
  10. 10.
    McCarthy, M.R., Muller, H.L.: RF free ultrasonic positioning. In: Proceedings of the Seventh IEEE International Symposium on Wearable Computers, ISWC, 79–85 (2003)Google Scholar
  11. 11.
    McCarthy, M.R., Duff, P., Muller, H.L., Randell, C.: Accessible ultrasonic positioning. IEEE Pervasive Computing 5(5), 86–93 (2006)CrossRefGoogle Scholar
  12. 12.
    Powell, C.: The Decca navigator system for ship and aircraft use. Proceedings of the IEE—Part B: Radio and Electronic Engineering 105(9), 225–234 (1958)Google Scholar
  13. 13.
    Potts, C.: Loran-C: Yesterday, today & tomorrow. In: Proceedings of the OCEANS’77 Conference, 493–497 (1977)Google Scholar
  14. 14.
    Mahajan, A., Walworth, M.: 3D position sensing using the differences in the time-of-flights from a wave source to various receivers. IEEE Trans. Robot. Autom. 17(1), 91–94 (2001)CrossRefGoogle Scholar
  15. 15.
    Ruiz, D., Urena, J., Gude, I., Villadangos, J.M., Garcia, J.C., Perez, C., Garcia, E.: Hyperbolic ultrasonic LPS using a Cayley–Menger bideterminant-based algorithm. In: Proceedings of the IEEE Instrumentation and Measurement Technology Conference, I2MTC, 785–790 (2009)Google Scholar
  16. 16.
    Ruiz, D., Urena, J., Garcia, J.C., Perez, C., Villadangos, J.M., García, E.: Efficient trilateration algorithm using time differences of arrival. Sensors Actuators A Phys. 193, 220–232 (2013)CrossRefGoogle Scholar
  17. 17.
    Kunin, V., Weidi, J., Turqueti, M., Saniie, J., Oruklu, E.: 3D direction of arrival estimation and localization using ultrasonic sensors in an anechoic chamber. In: Proceeding of the 2011 IEEE International Ultrasonics Symposium (IUS), 756759 (2011)Google Scholar
  18. 18.
    Elvira, S., de Castro, A., Garrido, J.: ALO4: Angle Localization and Orientation System with Four Receivers. Int. J. Adv. Robot. Syst. 11(152), 1–10 (2014). doi: 10.5772/58831
  19. 19.
    Ruiz, D., Urena, J., Gude, I., Villadangos, J.M., Garcia, J.C., Perez, C., Garcia, E.: New iterative algorithm for hyperbolic positioning used in an Ultrasonic Local Positioning SystemGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Santiago Elvira Diaz
    • 1
  • Angel de Castro Martin
    • 1
  • Javier Garrido Salas
    • 1
  1. 1.Universidad Autonoma de MadridMadridSpain

Personalised recommendations