Global Convergence of a Decentralized Adaptive Fuzzy Control for the Motion of Robot Manipulators: Application to the Mitsubishi PA10-7CE as a Case of Study

  • Miguel A. Llama
  • Alejandro Flores
  • Víctor Santibáñez
  • Ricardo Campa


In general terms, robot control consists in making a robot execute a commanded task. One of the most important cases is the trajectory tracking or motion control. In this paper, a control algorithm that uses adaptive fuzzy systems to approximate local portions of the robot manipulator dynamics is proposed in order to solve the trajectory tracking problem. This scheme is characterized by not requiring any knowledge of the dynamic model and, in contrast to some fuzzy adaptive controllers previously developed, the one proposed here is in a decentralized configuration, wherein each joint is considered as a subsystem and is independently controlled only through its local variables. Furthermore, a study that guarantees the stability and the boundedness of the solutions of the closed-loop system via Lyapunov theory is presented, including a functional analysis which proves for the first time that a decentralized adaptive fuzzy controller satisfies the motion control objective. The theoretical results exposed here are verified via experimentation by applying the designed algorithm to the Mitsubishi PA10-7CE robot arm and the outcomes are reported.


Fuzzy control Adaptive control Robot control Decentralized control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barkana, I.: Output feedback stabilizability and passivity in nonstationary and nonlinear systems. Int. J. Adapt. Control Sig. Process. 7(24), 568–591 (2010)MathSciNetMATHGoogle Scholar
  2. 2.
    Barkana, I.: Defending the beauty of the invariance principle. Int. J. Control 1(87), 186–206 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chen, C.-T.: Linear System Theory and Design. Oxford University Press, New York (1999)Google Scholar
  4. 4.
    Desoer, C.A., Vidyasagar, M.: Feedback Systems: Input-Output Properties. Academic Press, New York (1975)MATHGoogle Scholar
  5. 5.
    Fateh, M.M.: Robust fuzzy control of electrical manipulators. J. Intell. Robot. Syst. 4(60), 415–434 (2010)CrossRefMATHGoogle Scholar
  6. 6.
    Fateh, M.M., Fateh, S.: Decentralized direct adaptive fuzzy control of robots using voltage control strategy. Nonlinear Dyn. 3(70), 1919–1930 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    García, R., Sánchez, E., Llama, M., Ruz, J.: Decentralized Neural Backstepping Control for an Industrial PA10-7CE Robot Arm. In: International Conference on Neural Computation Theory and Applications, Paris, France (2011)Google Scholar
  8. 8.
    Haddad, W., Chellaboina, V.: Nonlinear Dynamical Systems and Control; A Lyapunov-Based Approach. Princeton University Press, New Jersey (2008)MATHGoogle Scholar
  9. 9.
    Huang, A.C., Chien, M.C.: Adaptive Control of Robot Manipulators; A Unified Regressor-Free Approach. World Scientific Publishing, Singapore (2010)CrossRefMATHGoogle Scholar
  10. 10.
    Ioannou, P., Sun, J.: Robust Adaptive Control. Dover, Mineola (2012)MATHGoogle Scholar
  11. 11.
    Kaufman, H., Barkana, I., Sobel, K.: Direct Adaptive Control Algorithms: Theory and Applications, Communications and Control Engineering Series. Springer, New York (1997)Google Scholar
  12. 12.
    Kelly, R., Santibáñez, V., Loría, A.: Control of Robot Manipulators in Joint Space. Springer, London (2005)Google Scholar
  13. 13.
    Khalil, H.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2001)Google Scholar
  14. 14.
    Lewis, F.L., Munro, N.: Robot Manipulator Control Theory and Practice. Marcel Dekker, New York (2004)Google Scholar
  15. 15.
    Lian, R.J.: Intelligent controller for robotic motion control. IEEE Trans. Ind. Electron 11(58), 5220–5230 (2011)CrossRefGoogle Scholar
  16. 16.
    Liu, M.: Decentralized control of robot manipulators: nonlinear and adaptive approaches. IEEE Trans. Autom. Control 2(44), 357–363 (1999)MathSciNetMATHGoogle Scholar
  17. 17.
    Liu, M.: Stability analysis of decentralized adaptive fuzzy logic control for robot arm tracking. IEEE Proc. 39th IEEE Conf. Decis. Control 1, 883–888 (2000)CrossRefGoogle Scholar
  18. 18.
    Llama, M., Kelly, R., Santibáñez, V.: A Stable Motion Control System for Manipulators via Fuzzy Self-Tuning. Fuzzy Sets Syst. 2(124), 133–154 (2001)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Llama, M., Kelly, R., Santibáñez, V., Centeno, H.: An adaptive fuzzy controller for robot manipulators: Theory and experimentation. Int. J. Fact. Autom., Robot. Soft Comput. 1, 122–131 (2009)Google Scholar
  20. 20.
    Ramírez, C.: Dynamic modeling and torque-mode control of the Mitsubishi PA10-7CE robot. Master’s thesis (in Spanish). Instituto Tecnológico de la Laguna, Torreón Coahuila, México (2008)Google Scholar
  21. 21.
    Sadati, N., Elhamifar, E.: Adaptive Fuzzy Decentralized Control of Robot Manipulators. In: International Conference on Industrial Electronics and Control Applications ICIECA, Quito, Ecuador (2005)Google Scholar
  22. 22.
    Salas, F., Llama, M., Santibáñez, V.: A stable self-organizing fuzzy pd control for robot manipulators. Int. J. Innov. Comput. Inf. Control 5(9), 2065–2086 (2013)Google Scholar
  23. 23.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics Modelling, Planning and Control. Springer, London (2009)Google Scholar
  24. 24.
    Slotine, J.J., Li, W.: On the Adaptive Control of Robot Manipulators. Int. J. Robot. Res. 3(6), 49–59 (1987)CrossRefGoogle Scholar
  25. 25.
    Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice Hall, Upper Saddle River (1990)MATHGoogle Scholar
  26. 26.
    Spong, M.W., Vidyasagar, M., Hutchinson, S.: Robot Modeling and Control. Wiley, Hoboken (2005)Google Scholar
  27. 27.
    Spooner, J., Maggiore, M., Ordóñez, R., Passino, K.: Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and Fuzzy Approximator Techniques. Wiley, Hoboken (2002)CrossRefGoogle Scholar
  28. 28.
    Tong, S.C., Liu, C., Li, Y.M.: Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties. IEEE Trans. Fuzzy Syst. 5(18), 845–861 (2010)CrossRefGoogle Scholar
  29. 29.
    Tong, S.C., Li, Y.M., Zhang, H.-G.: Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays. IEEE Trans. Neural Netw. 7 (22), 1073–1086 (2011)CrossRefGoogle Scholar
  30. 30.
    Tong, S.C., Huo, B., Li, Y.M.: Observer-based adaptive decentralized fuzzy fault-tolerant control ofnonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy Syst. 1(22), 1–15 (2014)CrossRefGoogle Scholar
  31. 31.
    Wang, L.X.: A Course In Fuzzy Systems and Control. Prentice Hall, Upper Saddle River (1996)Google Scholar
  32. 32.
    Yang, Z-J., Fukushima, Y., Qin, P.: Decentralized adaptive robust control of robot manipulators. IEEE Trans. Control Syst. Technol 5(20), 1357–1365 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Miguel A. Llama
    • 1
  • Alejandro Flores
    • 1
  • Víctor Santibáñez
    • 1
  • Ricardo Campa
    • 1
  1. 1.División de Estudios de Posgrado e InvestigaciónTecnológico Nacional de México, Instituto Tecnológico de la LagunaTorreón CoahuilaMéxico

Personalised recommendations