Advertisement

Journal of Intelligent & Robotic Systems

, Volume 80, Issue 1, pp 71–85 | Cite as

RGB-D DE-based Scan Matching: Exploiting Colour Properties in Registration

  • Fernando Martín
  • Jaime Valls Miró
  • Luis Moreno
Article

Abstract

Colour plays a fundamental role in the perception process of humans. In robotics, the exploitation of this type of information has become increasingly important in many different tasks. The development of new sensors has made it possible to obtain colour information together with depth information about the environment. We have recently developed a scan matching algorithm based on evolutionary concepts (Differential Evolution). The main objective of this work is to include colour properties in the registration process, studying how colour can be used to improve the scan matching process. In particular, we have designed a filter to extract the most significant points of a RGB-D scan based on the Delta E divergence between neighbours. In addition, colour properties have also been included in the fitness function of the scan matching method. Our approach has been tested in a real environment and the most significant conclusion is the improvement of the algorithm performance when measuring the valley of convergence.

Keywords

Scan matching Differential Evolution Delta E divergence RGB-D mapping Evolutionary algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leonard, J.J., Durrant-Whyte, H.: Mobile Robot Localization by Tracking Geometric Beacons. IEEE Transaction on Robotics and Automation 7, 376–382 (1991)CrossRefGoogle Scholar
  2. 2.
    Smith, R., Self, M., Cheeseman, P.: Estimating Uncertain Spatial Relationships in Robotics. In: Proceedings of the Second Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI’86), pp 267–288. Elsevier Science, New York (1986)Google Scholar
  3. 3.
    Martín, F., Moreno, L., Blanco, D., Muñoz, M.L.: Kullback Leibler divergence-based global localization for mobile robots. Robot. Auton. Syst. 62, 120-130 (2014)CrossRefGoogle Scholar
  4. 4.
    Storn, R., Price, K.: Differential Evolution A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 11, 341-359 (1997)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments.In: Proceedings of the Intl. Symp. on Experimental Robotics (ISER) (2010)Google Scholar
  7. 7.
    Izadi, S., Kim, D., Molyneaux, O.H.D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: KinectFusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera. In: Proceedings of the 24th annual ACM symposium on User interface software and technology (UIST’11), pp. 559–568 (2011)Google Scholar
  8. 8.
    Newcombe, R.A., Davison, A.J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Hodges, D.M.S., Kim, D., Fitzgibbon, A.: KinectFusion: Real-Time Dense Surface Mapping and Tracking. In: Proceedings of the 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR’11) (2011)Google Scholar
  9. 9.
    Nüchter, A., Lingemann, K., Hertzberg, J.: 6D SLAM-3D Mapping Outdoor Environments. Journal of Field Robotics 24, 699–722 (2007)MATHCrossRefGoogle Scholar
  10. 10.
    Besl, P.J., McKay, N.D.: A method for registration of 3d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  11. 11.
    Hähnel, D., Burgard, W., Thrun, S.: Learning compact 3D models of indoor and outdoor environments with a mobile robot. Robot. Auton. Syst. 44, 15–27 (2003)CrossRefGoogle Scholar
  12. 12.
    Triebel, R., Pfaff, P., Burgard, W.: Multi-Level Surface Maps for Outdoor Terrain Mapping and Loop Closing. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’06) (2006)Google Scholar
  13. 13.
    Cole, D.M., Newman, P.M.: Using Laser Range Data for 3D SLAM in Outdoor Environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’06) (2006)Google Scholar
  14. 14.
    Lu, F., Milios, E.: Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans. J. Intell. Robot. Syst. 20, 249–275 (1997)CrossRefGoogle Scholar
  15. 15.
    Tomono, M.: A scan matching method using euclidean invariant signature for global localization and map building. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’04) (2004)Google Scholar
  16. 16.
    Rusinkiewicz, S., Levoy, M.: Efficient Variants of the ICP Algorithm. In: Proceedings of the Third International Conference on 3D Digital Imaging and Modeling (2001)Google Scholar
  17. 17.
    Bosse, M., Zlot, R.: Map Matching and Data Association for Large-Scale 2D Laser Scan-Based SLAM. The International Journal of Robotics Research 27, 667–691 (2008)CrossRefGoogle Scholar
  18. 18.
    Johnson, A., Kang, S.B.: Registration and integration of textured 3-d data. In: International Conference on Recent Advances in 3-D Digital Imaging and Modeling (3DIM’97) (1997)Google Scholar
  19. 19.
    May, S., Dröschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight camers. Journal of Field Robotics 26, 11–12 (2009)CrossRefGoogle Scholar
  20. 20.
    Magnusson, M., Ducket, T.: Scan Registration for Autonomous Mining Vehicles Using 3D-NDT. Journal of Field Robotics 24(10), 803–827 (2007)CrossRefGoogle Scholar
  21. 21.
    Biber, P., Straßer, W.: The Normal Distributions Transform: A New Approach to Laser Scan Matching. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’03) (2003)Google Scholar
  22. 22.
    Diosi, A., Kleeman, L.: Laser Scan Matching in Polar Coordinates with Application to SLAM. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’05) (2005)Google Scholar
  23. 23.
    Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’00) (2000)Google Scholar
  24. 24.
    Henry, P., Fox, D., Bhowmik, A., Mongia, R.: Patch Volumes: Segmentation-Based Consistent Mapping with RGB-D Cameras. In: Proceedings of the International Conference on 3D Vision (3DV’2013) (2013)Google Scholar
  25. 25.
    Ramos, F., Fox, D., Durrant-Whyte, H.: CRF-matching: Conditional random fields for feature-based scan matching. In: Proceedings of Robotics: Science and Systems (RSS’07) (2007)Google Scholar
  26. 26.
    Weise, T., Leibe, B., Gool, L.V.: Accurate and robust registration for in-hand modeling. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’08) (2008)Google Scholar
  27. 27.
    Peasley, B., Birchfield, S.: Replacing Projective Data Association with Lucas-Kanade for KinectFusion. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’13) (2013)Google Scholar
  28. 28.
    Whelan, T., Johannsson, H., Kaess, M.H., Leonard, J.J.: Robust real-time visual odometry for dense RGB-D mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’13) (2013)Google Scholar
  29. 29.
    Kerl, C., Sturm, J., Cremers, D.: Dense visual SLAM for RGB-D cameras. In: Proceedings fo the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’13) (2013)Google Scholar
  30. 30.
    Martín, F., Valls Miró, J., Moreno, L.C.: Towards Exploiting the Advantages of Colour in Scan Matching. In: ROBOT2013: First Iberian Robotics Conference - Advances in Intelligent Systems and Computing, vol. 253, pp. 217–231. Springer International Publishing (2014)Google Scholar
  31. 31.
    Hunter, R.S.: Photoelectric Color-Difference Meter. In: Proceedings of the Winter Meeting of the Optical Society of America (1948)Google Scholar
  32. 32.
    Hunter, R.S.: Accuracy, Precision, and Stability of New Photo-electric Color-Difference Meter. In: Proceedings of the Thirty-Third Annual Meeting of the Optical Society of America (1948)Google Scholar
  33. 33.
    Moreno, L., Garrido, S., Muñoz, M.L.: Evolutionary Filter for Robust Mobile Robot Localization. Robot. Auton. Syst. 54(7), 590–600 (2006)CrossRefGoogle Scholar
  34. 34.
    Martín, F., Moreno, L., Garrido, S., Blanco, D.: High-Accuracy Global Localization Filter for three-dimensional Environments. Robotica 30, 363–378 (2011)CrossRefGoogle Scholar
  35. 35.
    Magnusson, M., Nüchter, A., Lörken, C., Lilienthal, A.J., Hertzberg, J.: Evaluation of 3D Registration Reliability and Speed A Comparison of ICP and NDT. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’09) (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Fernando Martín
    • 1
  • Jaime Valls Miró
    • 2
  • Luis Moreno
    • 1
  1. 1.Carlos III UniversityMadridSpain
  2. 2.University of TechnologySydneyAustralia

Personalised recommendations