Advertisement

Journal of Intelligent & Robotic Systems

, Volume 80, Issue 3–4, pp 375–384 | Cite as

Attitude Estimation in SO(3): A Comparative UAV Case Study

  • Alexandra Moutinho
  • Miguel Figueirôa
  • José Raul Azinheira
Article

Abstract

This paper introduces a novel algorithm to obtain attitude estimations from low cost inertial measurement units including 3-axis accelerometer, 3-axis gyroscope and 3-axis magnetometer. This nonlinear attitude estimator is derived from Lyapunov’s theory and formulated in the special orthogonal group SO(3). The impact of the gyroscope bias is also assessed and an online estimator provided. The performance of the proposed estimator is validated and compared to current commonly used methods, namely the classical extended Kalman filter and two other nonlinear estimators in SO(3). Realistic simulations consider a quadcopter unmanned aerial vehicle subject to wind disturbances and whose sensors parameters have been identified from flight tests data.

Keywords

Attitude estimation Nonlinear observer UAV Online bias estimation Inertial measurement unit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batista, P., Silvestre, C., Oliveira, P.: Sensor-based globally asymptotically stable filters for attitude estimation: Analysis, design, and performance evaluation. IEEE Trans. Autom. Control 57(8), 2095–2100 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Crassidis, J., Markley, F., Chen, Y.: Survey of nonlinear attitude estimation methods. J. Guid., Control Dyn. 30(1), 12–28 (2007)CrossRefGoogle Scholar
  3. 3.
    Eynard, D., Vasseur, P., Demonceaux, C., Frémont, V.: UAV altitude estimation by mixed stereoscopic vision. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 646–651. IEEE, Taipei (2010)Google Scholar
  4. 4.
    Fernando, T., Chandiramani, J., Lee, T., Gutierrez, H.: Robust adaptive geometric tracking controls on SO(3) with an application to the attitude dynamics of a quadrotor UAV. In: Proceedings 50th IEEE Conference on Decision and Control and European Control Conference, pp 7380–7385. IEEE, Orlando (2011)Google Scholar
  5. 5.
    Gebre-Egziabher, D., Elkaim, G.H., Powell, J.D., Parkinson, B.W.: A gyro-free quaternion-based attitude determination system suitable for implementation using low cost sensors. In: Proceedings Position Location and Navigation Symposium, pp 185–192. IEEE (2000)Google Scholar
  6. 6.
    Grzonka, S., Grisetti, G., Burgard, W.: A fully autonomous indoor quadrotor. IEEE Trans. Robot. 28(1), 90–100 (2012)CrossRefGoogle Scholar
  7. 7.
    Henriques, B.: Estimation and control of a quadrotor attitude. Master thesis, Instituto Superior Tecnico, Universidade Tecnica de Lisboa (2011)Google Scholar
  8. 8.
    Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M.: An open source and open hardware embedded metric optical flow CMOS camera for indoor and outdoor applications. In: Proceedings IEEE International Conference on Robotics and Automation, pp 1736–1741. IEEE, Karlsruhe (2013)Google Scholar
  9. 9.
    Hua, M.D.: Attitude estimation for accelerated vehicles using GPS/INS measurements. Control. Eng. Pract. 18(7), 723–732 (2010)CrossRefGoogle Scholar
  10. 10.
    Kumar, N.S., Jann, T.: Estimation of attitudes from a low-cost miniaturized inertial platform using Kalman filter-based sensor fusion algorithm. Sadhana 29(2), 217–235 (2004)CrossRefGoogle Scholar
  11. 11.
    Lee, T.G, Leoky, M., McClamroch, N.H.: Geometric tracking control of a quadrotor UAV on SE(3). In: Proceedings 49th IEEE Conference on Decision and Control, pp 5420–5425. IEEE, Atlanta (2010)Google Scholar
  12. 12.
    Madinehi, N.: Rigid body attitude estimation: An overview and comparative study. Master thesis, Western University Canada (2013)Google Scholar
  13. 13.
    Mahony, R., Hamel, T., Pflimlin, J.M.J.: Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 53(5), 1203–1218 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mahony, R., Hamel, T., Trumpf, J., Lageman, C.: Nonlinear attitude observers on SO(3) for complementary and compatible measurements: A theoretical study. In: Proceedings Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, pp. 6407–6412. IEEE, Shanghai (2009)Google Scholar
  15. 15.
    Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)CrossRefGoogle Scholar
  16. 16.
    Markley, F.: Attitude determination using vector observations and the singular value decomposition. J. Astronaut. Sci 36(3), 245–258 (1988)MathSciNetGoogle Scholar
  17. 17.
    Markley, F.L., Mortari, D.: Quaternion attitude estimation using vector observations. J. Astronaut. Sci. 48(2-3), 359–380 (2000)Google Scholar
  18. 18.
    Martin, P., Salaun, E.: Generalized multiplicative extended Kalman filter for aided attitude and heading reference system. In: Proceedings Guidance, Navigation and Control Conference, pp 1–13. AIAA, Toronto (2010)Google Scholar
  19. 19.
    Mathworks: Dryden Wind Turbulence Model, Matlab Aerospace Toolbox (2014)Google Scholar
  20. 20.
    Politi, T.: A formula for the exponential of a real skew-symmetric matrix of order 4. BIT 41(4), 842–845 (2001)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Shabayek, A.E.R., Demonceaux, C., Morel, O., Fofi, D.: Vision based UAV attitude estimation: Progress and insights. J. Intell. Robot. Syst. 65(1-4), 295–308 (2012)CrossRefGoogle Scholar
  22. 22.
    Shuster, M.D.: A simple Kalman filter and smoother for spacecraft attitude. J. Astronaut. Sci. 37(1), 86–106 (1989)Google Scholar
  23. 23.
    Vandyke, M.C., Schwartz, J.L., Hall, C.D.: Unscented Kalman filtering for spacecraft attitude state and parameter estimation. In: Proceedings AAS/AIAA space flight mechanics conference (2004)Google Scholar
  24. 24.
    Vasconcelos, J., et al.: Discrete-time complementary filters for attitude and position estimation: Design, analysis and experimental validation. IEEE Trans. Control Syst. Technol. 19(1), 181–198 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Vasconcelos, J.F., Cunha, R., Silvestre, C., Oliveira, P.: A nonlinear position and attitude observer on SE(3) using landmark measurements. Syst. Control Lett. 59(3-4), 155–166 (2010)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Vasconcelos, J.F., Silvestre, C., Oliveira, P.: A nonlinear GPS/IMU based observer for rigid body attitude and position estimation. In: Proceedings 47th IEEE Conference on Decision and Control, pp. 1255–1260 . IEEE, Cancun (2008)Google Scholar
  27. 27.
    Yoo, T., Hong, S., Yoon, H., Park, S.: Gain-scheduled complementary filter design for a MEMS based attitude and heading reference system. Sensors 11(4), 3816–3830 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alexandra Moutinho
    • 1
  • Miguel Figueirôa
    • 2
  • José Raul Azinheira
    • 1
  1. 1.LAETA, IDMEC, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations