Advertisement

Journal of Intelligent & Robotic Systems

, Volume 80, Supplement 1, pp 277–293 | Cite as

Adaptive Positive Selection for Keystroke Dynamics

  • Paulo Henrique Pisani
  • Ana Carolina Lorena
  • André C. P. L. F. de Carvalho
Article

Abstract

Current technologies provide state of the art services but, at the same time, increase data exposure, mainly due to Internet-based applications. In view of this scenario, improved authentication mechanisms are needed. Keystroke dynamics, which recognizes users by their typing rhythm, is a cost-effective alternative. This technology usually only requires a common keyboard in order to acquire authentication data. There are several studies investigating the use of machine learning techniques for user authentication based on keystroke dynamics. However, the majority of them assume a scenario which the user model is not updated. It is known that typing rhythm changes over time (concept drift). Consequently, classification algorithms in keystroke dynamics have to be able to adapt the user model to these changes. This paper evaluates adaptation methods for an immune positive selection algorithm in a data stream context. Experimental results showed that they improved classification performance, mainly for false rejection rates.

Keywords

Adaptive biometric systems Keystroke dynamics Positive selection Data streams 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartlow, N., Cukic, B.: Evaluating the reliability of credential hardening through keystroke dynamics. In: 17th International Symposium on Software Reliability Engineering, 2006. ISSRE ’06, pp. 117–126. IEEE (2006)Google Scholar
  2. 2.
    de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer (2002)Google Scholar
  3. 3.
    Crawford, H.: Keystroke dynamics: Characteristics and opportunities. In: 2010 Eighth Annual International Conference on Privacy Security and Trust (PST), pp. 205–212 (2010)Google Scholar
  4. 4.
    Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res, 1–30 (2006)Google Scholar
  5. 5.
    Freni, B., Marcialis, G., Roli, F.: Replacement algorithms for fingerprint template update. In: Campilho, A., Kamel, M. (eds.) Image Analysis and Recognition, Lecture Notes in Computer Science, vol. 5112, pp. 884–893. Springer, Berlin Heidelberg (2008)Google Scholar
  6. 6.
    Gaines, R., Lisowski, W., Press, S., Shapiro, N.: Authentication by keystroke timing: Some preliminary results, technical report. Tech. rep., Rand Corporation (1980)Google Scholar
  7. 7.
    Giot, R., Dorizzi, B., Rosenberger, C.: Analysis of template update strategies for keystroke dynamics. In: 2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 21–28. IEEE (2011)Google Scholar
  8. 8.
    Giot, R., El-Abed, M., Hemery, B., Rosenberger, C.: Unconstrained keystroke dynamics authentication with shared secret. Comput. Secur. 30(6–7), 27–445 (2011)Google Scholar
  9. 9.
    Giot, R., El-Abed, M., Rosenberger, C.: Greyc keystroke: A benchmark for keystroke dynamics biometric systems. In: IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS 2009), pp. 419–424. IEEE Computer Society, Washington, DC (2009)Google Scholar
  10. 10.
    Giot, R., El-Abed, M., Rosenberger, C.: Web-based benchmark for keystroke dynamics biometric systems: A statistical analysis. In: 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 11–15 (2012)Google Scholar
  11. 11.
    Giot, R., Rosenberger, C., Dorizz, B.: Can chronological information be used as a soft biometric in keystroke dynamics?. In: 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 7–10 (2012)Google Scholar
  12. 12.
    Giot, R., Rosenberger, C., Dorizzi, B.: Hybrid template update system for unimodal biometric systems. In: 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–7 (2012)Google Scholar
  13. 13.
    Giot, R., Rosenberger, C., Dorizzi, B.: Performance evaluation of biometric template update. In: International Biometric Performance Testing Conference, pp. 1–4 (2012)Google Scholar
  14. 14.
    Hosseinzadeh, D., Krishnan, S.: Gaussian mixture modeling of keystroke patterns for biometric applications. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 38(6), 816–826 (2008)CrossRefGoogle Scholar
  15. 15.
    Kang, P., Hwang, S.s., Cho, S. In: Lee, S.W., Li, S. (eds.) Continual retraining of keystroke dynamics based authenticator, vol. 4642, pp. 1203–1211. Springer, Berlin /Heidelberg (2007)Google Scholar
  16. 16.
    Killourhy, K., Maxion, R.: Why did my detector do that?! predicting keystroke-dynamics error rates. In: Jha, S., Sommer, R., Kreibich, C. (eds.) Recent Advances in Intrusion Detection, Lecture Notes in Computer Science, vol. 6307, pp. 256–276. Springer, Berlin / Heidelberg (2010)Google Scholar
  17. 17.
    Magalhaes, S.T., Revett, K., Santos, H.M.D.: Password secured sites: Stepping forward with keystroke dynamics. In: Proceedings of the International Conference on Next Generation Web Services Practices, NWESP ’05, p 293. IEEE Computer Society (2005), doi: 10.1109/NWESP.2005.62
  18. 18.
    Martono, W., Ali, H., Salami, M.J.E.: Keystroke pressure-based typing biometrics authentication system using support vector machines. In: Proceedings of the 2007 International Conference on Computational Science and Its Applications -Volume Part II, ICCSA’07, pp. 85–93. Springer, Berlin, Heidelberg (2007)Google Scholar
  19. 19.
    Messerman, A., Mustafic, T., Camtepe, S., Albayrak, S.: Continuous and non-intrusive identity verification in real-time environments based on free-text keystroke dynamics. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–8 (2011)Google Scholar
  20. 20.
    Peacock, A., Ke, X., Wilkerson, M.: Typing patterns: A key to user identification. IEEE Secur. Priv. 2(5), 40–47 (2004)CrossRefGoogle Scholar
  21. 21.
    Pisani, P.H.: Algoritmos imunológicos aplicados na detecção de intrusões com dinâmica da digitação. Master’s thesis, Universidade Federal do ABC (2012)Google Scholar
  22. 22.
    Pisani, P.H., Lorena, A.C.: A systematic review on keystroke dynamics. J. Braz. Comput. Soc. 19(4), 573–587 (2013)CrossRefGoogle Scholar
  23. 23.
    Pisani, P.H., Lorena, A.C., de Leon Ferreira de Carvalho, A.C.P.: Algoritmos imunológicos adaptativos em dinâmica da digitação: um contexto de fluxo de dados. In: Anais do X Encontro Nacional de Inteligṅcia Artificial e Computacional - ENIAC (2013)Google Scholar
  24. 24.
    Rattani, A., Marcialis, G., Roli, F.: Self adaptive systems: An experimental analysis of the performance over time. In: 2011 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 36–43 (2011), doi: 10.1109/CIBIM.2011.5949222
  25. 25.
    Roli, F., Didaci, L., Marcialis, G.: Adaptive biometric systems that can improve with use. In: Ratha, N., Govindaraju, V. (eds.) Advances in Biometrics, pp. 447–471. Springer, London (2008)Google Scholar
  26. 26.
    Roli, F., Marcialis, G.: Semi-supervised pca-based face recognition using self-training. In: Yeung, D.Y., Kwok, J., Fred, A., Roli, F., Ridder D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition, Lecture Notes in Computer Science, vol. 4109, pp. 560–568. Springer, Berlin Heidelberg (2006)Google Scholar
  27. 27.
    Scheidat, T., Makrushin, A., Vielhauer, C.: Automatic template update strategies for biometrics. Tech. rep., Otto-von-Guericke University of Magdeburg, Germany (2007)Google Scholar
  28. 28.
    Stibor, T., Timmis, J.: Is negative selection appropriate for anomaly detection. ACM GECCO, 321–328 (2005)Google Scholar
  29. 29.
    Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education (2006)Google Scholar
  30. 30.
    Teh, P.S., Teoh, A.B.J., Yue, S.: A survey of keystroke dynamics biometrics. Sci. World J., 1–24 (2013). doi: 10.1155/2013/408280
  31. 31.
    Yu, E., Cho, S. In: Liu, J., Cheung, Y.m., Yin, H. (eds.) : Novelty detection approach for keystroke dynamics identity verification, vol. 2690, pp. 1016–1023. Springer, Berlin / Heidelberg (2003)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Paulo Henrique Pisani
    • 1
  • Ana Carolina Lorena
    • 2
  • André C. P. L. F. de Carvalho
    • 1
  1. 1.Universidade de São Paulo (USP)São PauloBrazil
  2. 2.Universidade Federal de São Paulo (UNIFESP)São PauloBrazil

Personalised recommendations