Sensor Fusion for Joint Kinematic Estimation in Serial Robots Using Encoder, Accelerometer and Gyroscope

  • Benigno Munoz-Barron
  • Jesus R. Rivera-Guillen
  • Roque A. Osornio-Rios
  • Rene J. Romero-Troncoso


Open-chain manipulator robots play an important role in the industry, since they are utilized in applications requiring precise motion. High-performance motion of a robot system mainly relies on adequate trajectory planning and the controller that coordinates the movement. The controller performance depends of both, the employed control law and the sensor feedback. Optical encoder feedback is the most used sensor for angular position estimation of each joint in the robot, since they feature accurate and low noise angular position measurements. However, it cannot detect mechanical imperfections and deformations common in open chain robots. Moreover, velocity and acceleration cannot be extracted from the encoder data without adding phase delays. Sensor fusion techniques are found to be a good solution for solving this problem. However, few works has been carried out in serial robots for kinematic estimation of angular position, velocity and acceleration, since the delays induced by the filtering techniques avoids its use as controller feedback. This work proposes a novel sensor-fusion-based feedback system capable of providing complete kinematic information from each joint in 4-degrees of freedom serial robot, with the contribution of a proposed methodology based on Kalman filtering for fusing the information from optical encoder, gyroscope and accelerometer appended to the robot. Calibration and experimentation are carried out for validating the proposal. The results are compared with another kinematic estimation technique finding that this proposal provides more information about the robot movement without adding state delays, which is important for being used as controller feedback.


Kalman filters Kinematics Robot sensing systems Sensor fusion Motion measurement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zanotto, V., Gasparetto, A., Lanzutti, A., Boscariol, P., Vidoni, R.: Experimental Validation of Minimum Time-jerk Algorithms for Industrial Robots. J. Intell. Robot Syst. 64, 197–219 (2011)CrossRefGoogle Scholar
  2. 2.
    Soo, J., Masayoshi, T., Tetsuaki, K.: Kinematic Kalman filter (KKF) for robot end-effector Sensing. J. Dyn. Sys. Meas. Control 131(2), 021010 (2009)CrossRefGoogle Scholar
  3. 3.
    Merry, R.J.E., van de Molengraft, M.J.G., Steinbuch, M.: Velocity and acceleration estimation for optical incremental encoders. Mechatronics 20(1), 20–26 (2010)CrossRefGoogle Scholar
  4. 4.
    Dumas, C., Caro, S., Garnier, S., Furet, B.: Joint stiffness identification of six-revolute industrial serial robots. Manufacturing 27(4), 881–888 (2011)Google Scholar
  5. 5.
    Tanaka, H., Nishi, H., Ohnishi, K.: An approach to acceleration estimation using FPGA. Ind. Electron. (2008). doi: 10.1109/ISIE.2008.4677086
  6. 6.
    Wen-Hong, Z., Lamarche, T.: Velocity Estimation by using position and acceleration sensors. IEEE T. Ind. Electron. 54(5), 2706–2715 (2007)CrossRefGoogle Scholar
  7. 7.
    Kozlowski, K., Herman, P.: Control of robot manipulators in terms of quasi-velocities. J. Intell. Robot Syst. 53, 2005–221 (2008)CrossRefGoogle Scholar
  8. 8.
    Nikoobin, A., Haghighi, R.: Lyapunov-based nonlinear disturbance observer for serial n-link robot manipulatos. J. Intell. Robot Syst. 55, 135–153 (2009)CrossRefMATHGoogle Scholar
  9. 9.
    Moradi, M., Malekizade, H.: Neural network identification based multivariable feedback linearization robust control for a two-link manipulator. J. Intell. Robot Syst. (2013). doi: 10.1007/s10846-013-9827-5.
  10. 10.
    Lima, M.F.M., Tenreiro Machado, J.A., Crisóstomo, M.: Filtering method in backlash phenomena analysis. Math. Comput. Model. 49(7–8), 1494–1503 (2009)CrossRefMATHGoogle Scholar
  11. 11.
    Rodriguez-Donate, C., Morales-Velazquez, L., Osornio-Rios, R.A., Herrera-Ruiz, G., Romero-Troncoso, R.J.: FPGA-based fused smart sensor for dynamic and vibration parameter extraction in industrial robot links. Sensors 10(4), 4114–4129 (2010)CrossRefGoogle Scholar
  12. 12.
    Morales-Velazquez, L., Romero-Troncoso, R.J., Osornio-Rios, R.A., Cabal-Yepez, E.: Sensorless jerk monitoring using an adaptive antisymmetric high-order FIR filter. Mech. Syst. Signal Pr. 23(7), 2383–2394 (2009)CrossRefGoogle Scholar
  13. 13.
    Rigatos, G.G.: Particle Filtering for State Estimation in Nonlinear Industrial Systems. IEEE T. Instrum. Meas. 58(11), 3885–3900 (2009)CrossRefGoogle Scholar
  14. 14.
    Peng, C., Oelmann, B.: Joint-angle measurement using accelerometers and gyroscopes—a survey. IEEE T. Instrum. Meas. 2, 404–414 (2010)CrossRefGoogle Scholar
  15. 15.
    Rodriguez-Donate, C., Osornio-Rios, R.A., Rivera-Guillen, J.R., Romero-Troncoso, R.J.: Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots. Sensors 11(4), 4335–4357 (2011)CrossRefGoogle Scholar
  16. 16.
    Shopp, P., Klingbeil, L., Peters, C., Manoli, Y.: Design, geometry evaluation, and calibration of a gyroscope-free inertial measurement unit. Sensor Actuat. A-Phys. 162(2), 379–387 (2010)CrossRefGoogle Scholar
  17. 17.
    Marsland, S.: Machine Learning: An Algorithmic Perspective, pp. 356–359. Chapman and Hall/CRC, Boca Raton (2009)Google Scholar
  18. 18.
    AN-1057 Application note; Analog Devices, Inc.: Norwood, MA 02062-9106, USA. Accessed 16 Auguts 2013
  19. 19.
    ADS7841 Data Sheet; Texas Instruments Inc.: Dallas, TX, USA. Accessed 16 Auguts 2013
  20. 20.
    L3G4200D Data Sheet; STMicroelectronics: Carrolton, TX, USA,2004. Accessed 16 Auguts 2013
  21. 21.
    LIS3L02AS4 Data Sheet; STMicroelectronics: Carrolton, TX, USA, 2004. Accessed 16 Auguts 2013
  22. 22.
    Huang, T., Chetwynd, D.G., Whitehouse, D.J., Wang, J.: A general and novel approach for parameter identification of 6-DOF parallel kinematic machines. Mech. Mach. Theory 40(2), 219–239 (2005)CrossRefMATHGoogle Scholar
  23. 23.
    Yang, J., Wu, W., Wu, Y., Lian, J.: Thermal calibration for the accelerometer triad based on the sequential multiposition observation. IEEE T. Instrum. Meas. 62(2), 467–482 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Benigno Munoz-Barron
    • 1
  • Jesus R. Rivera-Guillen
    • 1
  • Roque A. Osornio-Rios
    • 1
  • Rene J. Romero-Troncoso
    • 2
    • 3
  1. 1.HSPdigital-CA Mecatronica, Facultad de IngenieriaUniversidad Autonoma de Queretaro, Campus San Juan del RioSan Juan del RioMexico
  2. 2.HSPdigital-CA Telematica, DICISUniversidad de GuanajuatoSalamancaMexico
  3. 3.Facultad de IngenieriaUniversidad Autonoma de QueretaroSan Juan del RioMexico

Personalised recommendations