Journal of Intelligent & Robotic Systems

, Volume 79, Issue 3–4, pp 433–448 | Cite as

A Conceptual Framework of Quality-Assured Fabrication, Delivery and Installation Processes for Liquefied Natural Gas (LNG) Plant Construction

  • Hung-Lin Chi
  • Jun Wang
  • Xiangyu Wang
  • Martijn Truijens
  • Ping Yung


Construction productivity issues in the Liquefied Natural Gas (LNG) construction industry can lead to project cost blowouts. Time wasted by construction personnel getting the right information on megaprojects can be a substantial contributing factor. It appears that the communication on site is not cost effective, judging by the number of large project that have experienced budget overruns in the past. More importantly, as-built design documentation often fails the quality test, resulting in operational inefficiencies once the plant has been handed over from Construction to Operation Phase. Common errors during the static prefabrication, dispatch and installation processes can result in serious rework as a significant amount of construction time and budget is wasted. To minimise these problems, this paper recommends to better control the dynamic natures of construction. This study propagates a conceptual framework for assuring quality of modular construction in LNG plants by introducing a Situation Awareness construction environment with well-defined sensing and tracking technologies. While encountering situations inconsistent with plans during construction, such as time delay, fabrication errors, conflicts in terms of accessibility and constructability issues and so forth, sensors mounted in situ can discover such situations and recursively fed back to field personnel. Automation and robotics technologies, such as real-time path planning, collision detection and deviation examination utilizing as-planned building information model, can assist engineers to rapidly react with inconsistent situations and make acceptable decisions instead of partially or entirely suspending the workforce through massive reworks. In this study, we conduct a preliminary study in demonstrating the feasibility of utilizing sensory devices and automatic planning technologies. The expected results of adopting the framework are the quality-assured modular construction and execution plans during construction stages to save rework construction time and budget.


LNG plants Modular construction Quality control Situation awareness Sensing and tracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, X., Truijens, M., Hou, L., Wang, Y.: Application of collaborative mobile system in ar-based visualization, data storage and manipulation. In: Luo, Y. (ed.) Cooperative Design, Visualization, and Engineering, vol. 8091. Lecture Notes in Computer Science, pp. 221–226. Springer, Berlin Heidelberg (2013)Google Scholar
  2. 2.
    Ellis, M., Heyning, C., Legrand, O.: Extending the LNG boom: Improving Australian LNG productivity and competitiveness. In: McKinsey Global Institute. New York (2013)Google Scholar
  3. 3.
    Taylor, C., Bradley, C., Dobbs, R., Thompson, F.D.C.: Beyond the boom: Australia’s productivity imperative. In: McKinsey Global Institute. New York (2012)Google Scholar
  4. 4.
    Wang, X., Love, P.E.D., Kim, M.J., Park, C.-S., Sing, C.-P., Hou, L.: A conceptual framework for integrating building information modeling with augmented reality. Autom. Constr. 34, 37–44 (2013)CrossRefGoogle Scholar
  5. 5.
    Lin, W., Zhang, N., Gu, A.: LNG (liquefied natural gas): A necessary part in China’s future energy infrastructure. Energy 35(11), 4383–4391 (2010)CrossRefGoogle Scholar
  6. 6.
    Wakamatsu, Y., Matsui, S., Yatsuhashi, Y.: Off-the-shelf mid-small-mini-scale LNG plant - case study for application. In: 17th International Conference and Exhibition on Liquefied Natural Gas. Houston (2013)Google Scholar
  7. 7.
    Babič, N.Č., Podbreznik, P., Rebolj, D.: Integrating resource production and construction using BIM. Autom. Constr. 19(5), 539–543 (2010)CrossRefGoogle Scholar
  8. 8.
    Vähä, P., Heikkilä, T., Kilpeläinen, P., Järviluoma, M., Gambao, E.: Extending automation of building construction — survey on potential sensor technologies and robotic applications. Autom. Constr. 36, 168–178 (2013)CrossRefGoogle Scholar
  9. 9.
    Akinci, B., Boukamp, F., Gordon, C., Huber, D., Lyons, C., Park, K.: A formalism for utilization of sensor systems and integrated project models for active construction quality control. Autom. Constr. 15(2), 124–138 (2006)CrossRefGoogle Scholar
  10. 10.
    Josephson, P.E., Hammarlund, Y.: The causes and costs of defects in construction: A study of seven building projects. Autom. Constr. 8(6), 681–687 (1999)CrossRefGoogle Scholar
  11. 11.
    Park, C.-S., Lee, D.-Y., Kwon, O.-S., Wang, X.: A framework for proactive construction defect management using BIM, augmented reality and ontology-based data collection template. Autom. Constr. 33, 61–71 (2013)CrossRefGoogle Scholar
  12. 12.
    Dong, A., Maher, M.L., Kim, M.J., Gu, N., Wang, X.: Construction defect management using a telematic digital workbench. Autom. Constr. 18(6), 814–824 (2009)CrossRefGoogle Scholar
  13. 13.
    Mell, P., Grance, T.: The NIST definition of cloud computing. Technical Report SP 800-145. National Institute for Standard and Technology (2011)Google Scholar
  14. 14.
    Redmond, A., Hore, A., Alshawi, M., West, R.: Exploring how information exchanges can be enhanced through cloud BIM. Autom. Constr. 24, 175–183 (2012)CrossRefGoogle Scholar
  15. 15.
    Jiao, Y., Wang, Y., Zhang, S., Li, Y., Yang, B., Yuan, L.: A cloud approach to unified lifecycle data management in architecture, engineering, construction and facilities management: Integrating BIMs and SNS. Adv. Eng. Inf. 27(2), 173–188 (2013)CrossRefGoogle Scholar
  16. 16.
    Curry, E., O’Donnell, J., Corry, E., Hasan, S., Keane, M., O’Riain, S.: Linking building data in the cloud: Integrating cross-domain building data using linked data. Adv. Eng. Inf. 27(2), 206–219 (2013)CrossRefGoogle Scholar
  17. 17.
    Venters, W., Whitley, E.A.: A critical review of cloud computing: researching desires and realities. J. Inf. Technol. 27, 179–197 (2012)CrossRefGoogle Scholar
  18. 18.
    Kelm, A., Laußat, L., Meins-Becker, A., Platz, D., Khazaee, M.J., Costin, A.M., Helmus, M., Teizer, J.: Mobile passive Radio Frequency Identification (RFID) portal for automated and rapid control of Personal Protective Equipment (PPE) on construction sites. Autom. Constr. 36, 38–52 (2013)CrossRefGoogle Scholar
  19. 19.
    Zhang, C., Hammad, A., Bahnassi, H.: Collaborative multi-agent systems for construction equipment based on real-time field data capturing. J. Inf. Technol. Constr. 14, 204–228 (2009)Google Scholar
  20. 20.
    Behzadan, A.H., Timm, B.W., Kamat, V.R.: General-purpose modular hardware and software framework for mobile outdoor augmented reality applications in engineering. Adv. Eng. Inf. 22(1), 90–105 (2008)CrossRefGoogle Scholar
  21. 21.
    Anil, E.B., Tang, P., Akinci, B., Huber, D.: Deviation analysis method for the assessment of the quality of the as-is building information models generated from point cloud data. Autom. Constr. 35, 507–516 (2013)CrossRefGoogle Scholar
  22. 22.
    Chi, H.-L., Chen, Y.-C., Kang, S.-C., Hsieh, S.-H.: Development of user interface for tele-operated cranes. Adv. Eng. Inf. 26 (3), 641–652 (2012)CrossRefGoogle Scholar
  23. 23.
    Chen, H.-T., Wu, S.-W., Hsieh, S.-H.: Visualization of CCTV coverage in public building space using BIM technology. Vis. Eng. 1(1), 5 (2013)CrossRefGoogle Scholar
  24. 24.
    Kim, D., Kim, J., Lee, K., Park, C., Song, J., Kang, D.: Excavator tele-operation system using a human arm. Autom. Constr. 18(2), 173–182 (2009)CrossRefGoogle Scholar
  25. 25.
    Shapira, A., Rosenfeld, Y., Mizrahi, I.: Vision system for tower cranes. J. Constr. Eng. Manag. 134(5), 320–332 (2008)CrossRefGoogle Scholar
  26. 26.
    Teizer, J.: 3D range imaging camera sensing for active safety in construction. J. Inf. Technol. Constr. 13, 103–117 (2008)Google Scholar
  27. 27.
    Wang, X., Schnabel, M.A.: Mixed reality in architecture, design, and construction. Springer (2009)Google Scholar
  28. 28.
    Wang, X., Gu, N., Marchant, D.: An empirical case study on designer’s perceptions of augmented reality within an architectural firm. J. Inf. Technol. Constr. 13, 536–552 (2008)Google Scholar
  29. 29.
    Wang, X.: Augmented reality in architecture and design: Potentials and challenges for application. Int. J. Archit. Comput. 7(2), 309–326 (2009)CrossRefGoogle Scholar
  30. 30.
    Wang, X.: Using augmented reality to plan virtual construction worksite. Int. J. Adv. Robot. Syst. 4(4), 501–512 (2007)Google Scholar
  31. 31.
    Shin, D.H., Dunston, P.S., Wang, X.: View changes in mixed reality-based collaborative virtual environments. ACM Trans. Appl. Percept. 2(1), 1–14 (2005)CrossRefGoogle Scholar
  32. 32.
    Wang, X., Dunston, P.S.: Design, strategies, and issues towards an augmented reality-based construction training platform. J. Inf. Technol. Constr. 12, 363–380 (2007)Google Scholar
  33. 33.
    Golparvar-Fard, M., Peña-Mora, F., Savarese, S.: Application of D 4AR - A 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. J. Inf. Technol. Constr. 14, 129–153 (2009)Google Scholar
  34. 34.
    Schall, G., Mendez, E., Kruijff, E., Veas, E., Junghanns, S., Reitinger, B., Schmalstieg, D.: Handheld augmented reality for underground infrastructure visualization. Pers. Ubiquit. Comput. 13(4), 281–291 (2009)CrossRefGoogle Scholar
  35. 35.
    Comport, A.I., Marchand, E., Pressigout, M., Chaumette, F.: Real-time markerless tracking for augmented reality: The virtual visual servoing framework. IEEE Trans. Vis. Comput. Graph. 12(4), 615–628 (2006)CrossRefGoogle Scholar
  36. 36.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  37. 37.
    Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  38. 38.
    Lai, K.-C., Kang, S.-C.: Collision detection strategies for virtual construction simulation. Autom. Constr. 18(6), 724–736 (2009)CrossRefGoogle Scholar
  39. 39.
    Yang, C.-E., Lin, J.J.-C., Hung, W.-H., Kang, S.-C.: Accessibility evaluation system for site layout planning - A tractor trailer example. Vis. Eng. 1(1), 12 (2013)CrossRefGoogle Scholar
  40. 40.
    Zhang, C., Hammad, A.: Improving lifting motion planning and re-planning of cranes with consideration for safety and efficiency. Adv. Eng. Inf. 26(2), 396–410 (2012)CrossRefGoogle Scholar
  41. 41.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)CrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    Hart, P.E., Nilsson, N.J., Raphael, B.: Correction to a formal basis for the heuristic determination of minimum cost paths. SIGART Newsl. 37, 28–29 (1972)Google Scholar
  43. 43.
    Kang, S., Miranda, E.: Planning and visualization for automated robotic crane erection processes in construction. Autom. Constr. 15(4), 398–414 (2006)CrossRefGoogle Scholar
  44. 44.
    Chang, Y.-C., Hung, W.-H., Kang, S.-C.: A fast path planning method for single and dual crane erections. Autom. Constr. 22, 468–480 (2012)CrossRefGoogle Scholar
  45. 45.
    Son, S., Park, H., Lee, K.H.: Automated laser scanning system for reverse engineering and inspection. Int. J. Mach. Tools Manuf. 42(8), 889–897 (2002)CrossRefGoogle Scholar
  46. 46.
    Kovacic, I., Oberwinter, L., Muller, C., Achammer, C.: The BIM-sustain experiment - simulation of BIM-supported multi-disciplinary design. Vis. Eng. 1(1), 13 (2013)CrossRefGoogle Scholar
  47. 47.
    Hou, L., Wang, X., Bernold, L., Love, P.: Using animated augmented reality to cognitively guide assembly. J. Comput. Civil Eng. 27(5), 439–451 (2013)CrossRefGoogle Scholar
  48. 48.
    Geoforce: Geoforce: Hardware. (2013). Accessed 31 Dec 2013
  49. 49.
    LaValle, S.M.: Motion planning: The essentials. IEEE Robot. Autom. Mag. 18(1), 79–89 (2011)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Hung-Lin Chi
    • 1
  • Jun Wang
    • 1
  • Xiangyu Wang
    • 1
    • 2
  • Martijn Truijens
    • 3
  • Ping Yung
    • 4
  1. 1.Australasian Joint Research Centre for Building Information Modelling (BIM)Curtin UniversityPerthAustralia
  2. 2.Department of Housing and Interior DesignKyung Hee UniversitySeoulSouth Korea
  3. 3.Woodside Energy Ltd.PerthAustralia
  4. 4.Department of Construction Management, School of Built EnvironmentCurtin UniversityPerthAustralia

Personalised recommendations