Advertisement

Journal of Intelligent & Robotic Systems

, Volume 79, Issue 3–4, pp 371–384 | Cite as

Line Segment Grouping and Linking: A Key Step Toward Automated Photogrammetry for Non-Contact Site Surveying

  • Fei Dai
  • Zhenhua Zhu
Article

Abstract

The surveying technique of photogrammetry has been proven to be safe, efficient, and inexpensive to extracting spatial data (i.e. shape, size, position) of infrastructure from collected photos. These data are useful in many infrastructure and construction applications such as quality control and quantity take-off. However, photogrammetry has not been widely used in construction projects because much effort is still needed to convert the image data into a three-dimensional (3D) geometric model in the physical space. More specifically, it demands manually marking object vertices and edges and referencing them across photos. To alleviate this situation, this paper proposes a novel method to group and link line segments in order to automate the object vertices and edges marking process. In the proposed method, small, discontinuous line segments are first detected in an image, and classified into different sets based on the vanishing points they belong to. Within each set, a novel algorithm is created to link the line segments into long line segments. Next, the corner information is derived from the image by a classic corner detector, and utilized to assure the actual locations of endpoints of each obtained long line segment. By removing the remaining ungrouped or unlinked small line segments, the final result is a set of complete and accurate line edges readily to be used in the ensuing step of photogrammetric process. So far, the grouping and classification of line segments have been implemented. The test result from outdoor and indoor images indicates effectiveness and promise of the method in facilitating the automation and broad applications of photogrammetry in construction.

Keywords

Non-contact measurement Image-based method 3D models Infrastructure Information technology Construction engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Von Gioi, R.G., et al.: Lsd: A fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2010)CrossRefGoogle Scholar
  2. 2.
    Quiñones-Rozo, C., Hashash, Y., Liu, L.: Digital image reasoning for tracking excavation activities. Autom. Constr. 17 (5), 608–622 (2008)CrossRefGoogle Scholar
  3. 3.
    Golparvar-Fard, M., Peña-Mora, F., Savarese, S.: Application of D4AR–A 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. ITcon (2009)Google Scholar
  4. 4.
    Dai, F., Lu, M.: Assessing the accuracy of applying photogrammetry to take geometric measurements on building products. J. Constr. Eng. Manag.-ASCE 136(2), 242–250 (2010)CrossRefGoogle Scholar
  5. 5.
    Dai, F., Lu, M., Kamat, V.R.: Analytical approach to augmenting site photos with 3D graphics of underground infrastructure in construction engineering applications. J. Comput. Civil Eng. 25(1), 66–74 (2011)CrossRefGoogle Scholar
  6. 6.
    Fathi, H., Brilakis, I.: Recovering the 3D structure of poorly textured infrastructure scenes using point and line features. In: Computing in Civil Engineering, pp. 170–177 (2012)Google Scholar
  7. 7.
    Klein, L., Li, N., Becerik-Gerber, B.: Imaged-based verification of as-built documentation of operational buildings. Autom. Constr. 21(0), 161–171 (2012)CrossRefGoogle Scholar
  8. 8.
    Brilakis, I.K., Soibelman, L., Shinagawa, Y.: Construction site image retrieval based on material cluster recognition. Adv. Eng. Inf. 20(4), 443–452 (2006)CrossRefGoogle Scholar
  9. 9.
    Ouellet, J.-N., Hebert, P.: A simple operator for very precise estimation of ellipses. In: Proceedings of the Fourth Canadian Conference on Computer and Robot Vision, pp. 21–28. IEEE Computer Society (2007)Google Scholar
  10. 10.
    Jiandong, Z., Liyan, Z., Xiaoyu, D.: Accurate 3D target positioning in close range photogrammetry with implicit image correction. Chin. J. Aeronaut. 22(6), 649–657 (2009)CrossRefGoogle Scholar
  11. 11.
    Ordóñez, C., et al.: Application of close range photogrammetry to deck measurement in recreational ships. Sensors 9(9), 6991–7002 (2009)CrossRefGoogle Scholar
  12. 12.
    Fischer, M.P., Keating, D.P.: Photogrammetric techniques for analyzing displacement, strain, and structural geometry in physical models: Application to the growth of monoclinal basement uplifts. Geol. Soc. Amer. Bull. 117(3–4), 369–382 (2005)CrossRefGoogle Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Bay, H., et al.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  15. 15.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. Int. J. Comput. Vis. 80(2), 189–210 (2008)CrossRefGoogle Scholar
  16. 16.
    Brilakis, I., Dai, F., Radopoulou, S.-C.: Achievements and challenges in recognizing and reconstructing civil infrastructure. In: Dellaert, F., et al. (eds.) Outdoor and Large-Scale Real-World Scene Analysis, pp 151–176. Springer, Berlin Heidelberg (2012)Google Scholar
  17. 17.
    Bartoli, A., Sturm, P.: Structure-from-motion using lines: Representation, triangulation, and bundle adjustment. Comput. Vis. Image Underst. 100(3), 416–441 (2005)CrossRefGoogle Scholar
  18. 18.
    Wang, Z., Wu, F., Hu, Z.: MSLD: A robust descriptor for line matching. Pattern Recog. 42(5), 941–953 (2009)CrossRefGoogle Scholar
  19. 19.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)CrossRefMATHGoogle Scholar
  20. 20.
    Li, H., Lavin, M.A., Le Master, R.J.: Fast Hough transform: A hierarchical approach. Comput. Vis. Graph. Image Process. 36(2–3), 139–161 (1986)CrossRefGoogle Scholar
  21. 21.
    Guil, N., Villalba, J., Zapata, E.L.: A fast Hough transform for segment detection. IEEE Trans. Image Process. 4(11), 1541–1548 (1995)CrossRefGoogle Scholar
  22. 22.
    Chutatape, O., Guo, L.: A modified Hough transform for line detection and its performance. Pattern Recog. 32(2), 181–192 (1999)CrossRefGoogle Scholar
  23. 23.
    Perantonis, S.J., et al.: Robust line detection using weighted region based Hough transform. Electron. Lett. 34(7), 648–650 (1998)CrossRefGoogle Scholar
  24. 24.
    Bonci, A., Leo, T., Longhi, S.: A Bayesian approach to the Hough transform for line detection. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 35(6), 945–955 (2005)CrossRefGoogle Scholar
  25. 25.
    Shneier, M.: Extracting linear features from images using pyramids. IEEE Trans. Syst. Man Cybern. 12, 569–572 (1982)CrossRefGoogle Scholar
  26. 26.
    Baumgartner, A., et al.: Automatic road extraction based on multi-scale, grouping, and context. Photogramm. Eng. Remote Sens. 65, 777–786 (1999)Google Scholar
  27. 27.
    Yan, Z., Xu, D., Tan, M.: A fast and robust method for line detection based on image pyramid and Hough transform. Trans. Inst. Meas. Control 33(8), 971–984 (2011)CrossRefGoogle Scholar
  28. 28.
    Yacoub, S.B., Jolion, J.-M.: Hierarchical line extraction. IEEE Proc.-Vis. Image Signal Process. 142(1), 7–14 (1995)CrossRefGoogle Scholar
  29. 29.
    Borgefors, G., Ramella, G., Sanniti di Baja, G.: Hierarchical decomposition of multiscale skeletons. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1296–1312 (2001)CrossRefGoogle Scholar
  30. 30.
    Burns, J.B., Hanson, A.R., Riseman, E.M.: Extracting straight lines. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(4), 425–455 (1986)CrossRefGoogle Scholar
  31. 31.
    Gupta, A.K., Chaudhury, S., Parthasarathy, G.: A new approach for aggregating edge points into line segments. Pattern Recog. 26(7), 1069–1086 (1993)CrossRefGoogle Scholar
  32. 32.
    Kahn, P., Kitchen, L., Riseman, E.M.: A fast line finder for vision-guided robot navigation. IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1098–1102 (1990)CrossRefGoogle Scholar
  33. 33.
    Chung, K.-L., et al.: New orientation-based elimination approach for accurate line-detection. Pattern Recog. Lett. 31(1), 11–19 (2010)CrossRefGoogle Scholar
  34. 34.
    Jang, J.-H., Hong, K.-S.: Fast line segment grouping method for finding globally more favorable line segments. Pattern Recog. 35(10), 2235–2247 (2002)CrossRefMATHGoogle Scholar
  35. 35.
    Boldt, M., Weiss, R., Riseman, E.: Token-based extraction of straight lines. IEEE Trans. Syst. Man Cybern. 19(6), 1581–1594 (1989)CrossRefGoogle Scholar
  36. 36.
    Nacken, P.F.M.: A metric for line segments. IEEE Trans. Pattern Anal. Mach. Intell. 15(12), 1312–1318 (1993)CrossRefGoogle Scholar
  37. 37.
    Tretyak, E., et al.: Geometric image parsing in man-made environments. Int. J. Comput. Vis. 97(3), 305–321 (2012)CrossRefGoogle Scholar
  38. 38.
    Toldo, R., Fusiello, A.: Robust multiple structures estimation with j-linkage. Lect. Notes Comput. Sci. - Eur. Conf. Comput. Vis. 5302, 537–547 (2008)Google Scholar
  39. 39.
    Antone, M.E., Teller, S.: Automatic recovery of relative camera rotations for urban scenes. In: Proceedings IEEE conference on computer vision and pattern recognition (2000)Google Scholar
  40. 40.
    Zuliani, M., Kenney, C.S., Manjunath, B.S.: The multiRANSAC algorithm and its application to detect planar homographies. In: IEEE International Conference on Image Processing. ICIP (2005)Google Scholar
  41. 41.
    Tardif, J.P.: Non-iterative approach for fast and accurate vanishing point detection. In: 12th IEEE International Conference on Computer Vision. IEEE, Kyoto (2009)CrossRefGoogle Scholar
  42. 42.
    Zuyang, K., Zhenwei, S., Liu, L.: Airport detection based on line segment detector. In: International Conference on Computer Vision in Remote Sensing (CVRS) (2012)Google Scholar
  43. 43.
    Lee, D.C., Hebert, M., Kanade, T.: Geometric reasoning for single image structure recovery. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR (2009)Google Scholar
  44. 44.
    Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)CrossRefGoogle Scholar
  45. 45.
    Kaehler, A., Bradski, G.: Learning OpenCV: Computer Vision in C ++ with the OpenCV Library. O’Reilly Media (2013)Google Scholar
  46. 46.
    Denis, P., Elder, J.H., Estrada, F.J.: Efficient edge-based methods for estimating manhattan frames in urban imagery. In: European Conference on Computer Vision (2008)Google Scholar
  47. 47.
    Dai, F., Lu, M.: Three-dimensional modeling of site elements by analytically processing image data contained in site photos. J. Constr. Eng. Manag. 139(7), 881–894 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringWest Virginia UniversityMorgantownUSA
  2. 2.Department of Building, Civil, and Environmental EngineeringConcordia UniversityMontrealCanada

Personalised recommendations