Journal of Intelligent & Robotic Systems

, Volume 77, Issue 1, pp 37–53 | Cite as

Quaternion-based Orientation Estimation Fusing a Camera and Inertial Sensors for a Hovering UAV

  • Gastón Araguás
  • Claudio Paz
  • David Gaydou
  • Gonzalo Perez Paina


Orientation estimation in quadrotors is essential for low-level stability control and for high-levelnavigation and motion planning. This is usually carried out by fusing measurements from different sensorsincluding inertial sensor, magnetic compass, sonar, GPS, camera, etc. In indoor environments, the GPSsignal is not available and the Earth’s magnetic field is highly disturbed. In this work we present a newapproach for visual estimation of the yaw angle based on spectral features, and a fusion algorithm usingunit quaternions, both applied to a hovering quadrotor. The approach is based on an Inertial MeasurementUnit and a downward-looking camera, rigidly attached to the quadrotor. The fusion is performed by means of an Extended Kalman Filter with a double measurement update stage. The inertial sensors provideinformation for orientation estimation, mainly for roll and pitch angles, whereas the camera is used for measuring the yaw angle. A new method to integrate the yaw angle in the measurement update of the filteris also proposed, using an augmented measurement vector in order to avoid discontinuities in the filterinnovation vector. The proposed approach is evaluated with real data and compared with ground truthgiven by a Vicon system. Experimental results are presented for both the visual yaw angle estimationand the fusion with the inertial sensors, showing an improvement in orientation estimation.


Orientation estimation Quadrotor IMU camera fusion Unit quaternions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gupte, S., Mohandas, P.I.T., Conrad, J.M.: A survey of quadrotor unmanned aerial vehicles. In: Southeastcon, 2012 Proceedings of IEEE, pp. 1–6 (2012)Google Scholar
  2. 2.
    Brockers, R., Hummenberger, M., Weiss, S., Matthies, L.: Towards autonomous navigation of miniature uav. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2014)Google Scholar
  3. 3.
    Li, B., Gallagher, T., Dempster, A.G., Rizos, C.: How feasible is the use of magnetic field alone for indoor positioning? In: International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–9 (2012)Google Scholar
  4. 4.
    Angermann, M., Frassl, M., Doniec, M., Julian, B.J., Robertson, P.: Characterization of the indoor magnetic field for applications in localization and mapping. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–9 (2012)Google Scholar
  5. 5.
    Bristeau, P.J., Callou, F., Vissiere, D., Petit, N.: The navigation and control technology inside the ar.drone micro uav. In: 18th IFACWorld Congress, pp. 1477–1484, Milano (2011)Google Scholar
  6. 6.
    Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley-Interscience (2006)Google Scholar
  7. 7.
    Seung-Min, O.: Multisensor fusion for autonomous uav navigation based on the unscented kalman filter with sequential measurement updates. In: IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 217–222 (2010)Google Scholar
  8. 8.
    Sabatelli, S., Galgani, M., Fanucci, L., Rocchi, A.: A double-stage kalman filter for orientation tracking with an integrated processor in 9-d imu. IEEE Trans. Instrum. Meas. 62(3), 590–598 (March 2013)CrossRefGoogle Scholar
  9. 9.
    Faugeras, O., Luong, Q.-T.: The geometry of multiple images: the laws that govern the formation of multiple images of a scene and some of their applications. MIT press, Cambridge (2004)Google Scholar
  10. 10.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)Google Scholar
  11. 11.
    Kaminski, J.Y., Shashua, A.: Multiple view geometry of general algebraic curves. Int. J. Comput. Vis. 56(3), 195– 219 (2004)CrossRefGoogle Scholar
  12. 12.
    Chantler, M.J., Jiahua, W.: Rotation invariant classification of 3d surface textures using photometric stereo and surface magnitude spectra. In: BMVC, pp. 1–10 (2000)Google Scholar
  13. 13.
    Varma, M., Zisserman, A.: Classifying images of materials: Achieving viewpoint and illumination independence. In: Computer Vision. ECCV, pp. 255–271. Springer, Berlin Heidelberg New York (2002)Google Scholar
  14. 14.
    Mundy, J.L., Zisserman, A., et al.: Geometric invariance in computer vision, Vol. 92. MIT press, Cambridge (1992)Google Scholar
  15. 15.
    Forsyth, D.A., Ponce, J.: Computer vision: a modern approach. Prentice Hall Professional Technical Reference (2002)Google Scholar
  16. 16.
    Harris, C., Stephens, M.: A combined corner and edge detector. Alvey Vision Conf. 15, 50 (1988)Google Scholar
  17. 17.
    Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework: Part 1: The quantity approximated, the warp update rule, and the gradient descent approximation. Int. J. Comput. Vis. 56(3), 221–255 (2004)CrossRefGoogle Scholar
  18. 18.
    Araguás, G., Sánchez, J., Canali, L.: Monocular visual odometry using features in the fourier domain. In VI Jornadas Argentinas de Robótica, Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina (2010)Google Scholar
  19. 19.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kuglin, C.D., Hines, D.C.: The phase correlation image alignment method. Proc. Int. Conf. on Cybernetics and Society 4, 163–165 (1975)Google Scholar
  21. 21.
    Zitová, B., Flusser, J.: Image registrationmethods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)CrossRefGoogle Scholar
  22. 22.
    Phillips, W.F., Hailey, C.E.: Review of attitude representations used for aircraft kinematics. J. Aircr. 38(4), 718–737 (2001)CrossRefGoogle Scholar
  23. 23.
    Nikolas, T., Roumeliotis, S.I.: Indirect Kalman filter for 3D attitude estimation. Technical Report 2005-002, University of Minnesota, Dept. of Comp. Sci. & Eng., (2005)Google Scholar
  24. 24.
    Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. on Signal Process. 50(2), 174–188 (2002)CrossRefGoogle Scholar
  25. 25.
    Sabatelli, S., Galgani, M., Fanucci, L., Rocchi, A.: A double stage kalman filter for sensor fusion and orientation tracking in 9d imu. In: IEEE on Sensors Applications Symposium (SAS), pp. 1–5 (2012)Google Scholar
  26. 26.
    Kuipers, J.B.: Quaternions and rotation sequences : a primer with applications to orbits, aerospace, and virtual reality. Princeton Univ. Press, Princeton (1999)MATHGoogle Scholar
  27. 27.
    Lee, G.H., Achtelik, M., Fraundorfer, F., Pollefeys, M., Siegwart, R.: A benchmarking tool for mav visual pose estimation. In: 11th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1541–1546 (2010)Google Scholar
  28. 28.
    Kelly, A.: Linearized error propagation in odometry. Int. J. Robotics Res 23(2), 179–218 (2004)CrossRefGoogle Scholar
  29. 29.
    Nourani-Vatani, N., Roberts, J., Srinivasan, M.V.: Practical visual odometry for car-like vehicles. In: IEEE International Conference on Robotics and Automation. ICRA ’09, pp. 3551–3557 (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Gastón Araguás
    • 1
  • Claudio Paz
    • 1
  • David Gaydou
    • 1
  • Gonzalo Perez Paina
    • 1
  1. 1.Centro de Investigación en Informática para la Ingeniería (CIII)Universidad Tecnológica Nacional, Facultad Regional CórdobaCórdobaArgentina

Personalised recommendations