Advertisement

A Hybrid System Framework for Unified Impedance and Admittance Control

  • Christian Ott
  • Ranjan Mukherjee
  • Yoshihiko Nakamura
Article

Abstract

Impedance Control and Admittance Control are two distinct implementations of the same control goal but their stability and performance characteristics are complementary. Impedance Control is better suited for dynamic interaction with stiff environments and Admittance Control is better suited for interaction with soft environments or operation in free space. In this paper, we use a hybrid systems framework to develop an entire family of controllers that have Impedance Control and Admittance Control at two ends of its spectrum; and intermediate controllers that have stability and performance characteristics that are an interpolation of those of Impedance Control and Admittance Control. The hybrid systems framework provides the scope for maintaining stability and achieving the best performance by choosing a specific controller for a given environment and by continuously changing the controller to adapt to a changing environment. The advantage of our approach is demonstrated with an extensive case study of a one-dimensional system and through experiments with the joint of a lightweight robotic arm.

Keywords

Impedance control Admittance control Hybrid control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aghili, F.: Robust impedance control of manipulators carrying a heavy payload. J. Dyn. Syst. Meas. Control, 132 (2010)Google Scholar
  2. 2.
    An, C.H., Hollerbach, J.M.: Dynamic stability issues in force control of manipulators. In: IEEE International Conference on Robotics and Automation, pp. 890–896 (1987)Google Scholar
  3. 3.
    Anderson, R.J., Spong, M.W.: Hybrid impedance control of robotic manipulators. IEEE Trans. Robot. Autom. 4 (5), 549–556 (1988)CrossRefGoogle Scholar
  4. 4.
    Brogliato, B.: Nonsmooth Mechanics, 2nd edn. Springer (1999)Google Scholar
  5. 5.
    Carignan, C.R., Smith, J.A.: Manipulator impedance accuracy in position-based impedance control implementations. In: IEEE International Conference on Robotics and Automation, pp 1216–1221 (1994)Google Scholar
  6. 6.
    Cheng, G., Hyon, S.-H., Morimoto, J., Ude, A., Colvin, G., Scroggin, W., Jacobsen, SC.: Cb: A humanoid research platform for exploring neuroscience. In: HUMANOIDS (2006)Google Scholar
  7. 7.
    Das, T., Mukherjee, R.: Shared-sensing and control using reversible transducers. IEEE Trans. Control Syst. Tech. 17, 242–248 (2009)CrossRefGoogle Scholar
  8. 8.
    Eppinger, S.D., Seering, W.P.: Understanding bandwidth limitations in robot force control. In: IEEE International Conference on Robotics and Automation, pp. 904–909 (1987)Google Scholar
  9. 9.
    Ferretti, G., Magnani, G.A., Rocco, P., Cecconello, F., Rossetti, G.: Impedance control for industrial robots. In: IEEE International Conference on Robotics and Automation, pp. 4027–4032 (2000)Google Scholar
  10. 10.
    Gantmacher, F.R.: The Theory of Matrices, vol. 1, pp. 239–241. Chelsea Publishing (1959)Google Scholar
  11. 11.
    Hogan, N.: Impedance control: An approach to manipulation, part I - theory. ASME J. Dyn. Syst. Meas. Control 107, 1–7 (1985)CrossRefMATHGoogle Scholar
  12. 12.
    Hogan, N.: Impedance control: An approach to manipulation, part II - implementation. ASME J. Dyn. Syst. Meas. Control 107, 8–16 (1985)CrossRefMATHGoogle Scholar
  13. 13.
    Hogan, N.: Impedance control: An approach to manipulation, part III - applications. ASME J. Dyn. Syst. Meas. Control 107, 17–24 (1985)CrossRefMATHGoogle Scholar
  14. 14.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1990)Google Scholar
  15. 15.
    Kang, S.-H., Jin, M., Chang, P.-H.: A solution to the accuracy/robustness dilemma in impedance control. IEEE/ASME Trans. Mechatron. 14 (3), 282–2934 (2009)CrossRefGoogle Scholar
  16. 16.
    Lawrence, D.A.: Impedance control stability properties in common implementations. In: IEEE International Conference on Robotics and Automation, pp. 1185–1190 (1988)Google Scholar
  17. 17.
    Liberzon, D., Morse, A.S.: Basic problems in stability of switched systems. IEEE Control Syst. Mag., 59–70 (1999)Google Scholar
  18. 18.
    Liu, G.J., Goldenberg, A.A.: Robust hybrid impedance control of robot manipulators. In: IEEE International Conference on Robotics and Automation, pp. 287–292 (1991)Google Scholar
  19. 19.
    Lu, W.S., Meng, Q.H.: Impedance control with adaptation for robotic manipulations. IEEE Trans. Robot. Autom. 7, 408–415 (1991)CrossRefGoogle Scholar
  20. 20.
    Mason, M.T.: Compliance and force control for computer controlled manipulators. IEEE Trans. Syst. Man Cybern. 11 (6), 418–432 (1981)CrossRefGoogle Scholar
  21. 21.
    Ott, C., Eiberger, O., Friedl, W., Bäuml, B., Hillenbrand, U., Borst, C., Albu-Schäffer, A., Brunner, B., Hirschmüller, H., Kielhöfer, S., Konietschke, R., Suppa, M., Wimböck, T., Zacharias, F., Hirzinger, G.: A humanoid two-arm system for dexterous manipulation. In: IEEE-RAS International Conference on Humanoid Robots, pp. 276–283 (2006)Google Scholar
  22. 22.
    Newman, W.S.: Stability and performance limits of interaction controllers. J. Dyn. Syst. Meas. Control 114, 563–570 (1992)CrossRefMATHGoogle Scholar
  23. 23.
    Ott, C., Mukherjee, R., Nakamura, Y.: Unified impedance and admittance control. In: IEEE International Conference on Robotics and Automation, pp. 554–561 (2010)Google Scholar
  24. 24.
    Pelletier, M., Doyon, M.: On the implementation and performance of impedance control on position controlled robots. In: IEEE International Conference on Robotics and Automation, pp. 1228–1233 (1994)Google Scholar
  25. 25.
    Raibert, M.H., Craig, J.J.: Hybrid position/force control of manipulators. ASME J. Dyn. Syst. Meas. Control 105, 126–133 (1981)CrossRefGoogle Scholar
  26. 26.
    Roy, J., Whitcomb, LL.: Adaptive force control of position/velocity controlled robots: Theory and experiment. IEEE Trans. Robot. Autom. 18 (2), 121–137 (2002)CrossRefGoogle Scholar
  27. 27.
    Salisbury, J.K.: Active stiffness control of a manipulator in cartesian coordinates. In: Proceedings of the IEEE Conference on Decision and Control, pp. 383–388 (1980)Google Scholar
  28. 28.
    Seraji, H.: Adaptive admittance control: An approach to explicit force control in compliant motion. In: IEEE International Conference on Robotics and Automation, pp. 2705–2712 (1994)Google Scholar
  29. 29.
    Siciliano, B., Khatib, O. (eds.): Handbook of Robotics. Springer, Berlin / Heidelberg (2008)Google Scholar
  30. 30.
    Slotine, J.-J.E., Li, W.: Adaptive manipulator control: A case study. In: IEEE International Conference on Robotics and Automation, pp. 1392–1400 (1987)Google Scholar
  31. 31.
    Surdilovic, D., Kirchhof, J.: A new position based force/impedance control for industrial robots. In: IEEE International Conference on Robotics and Automation, pp. 629–634 (1996)Google Scholar
  32. 32.
    Valency, T., Zacksenhouse, M.: Accuracy/robustness dilemma in impedance control. ASME J. Dyn. Syst. Meas. Control 125, 310–319 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Christian Ott
    • 1
  • Ranjan Mukherjee
    • 2
  • Yoshihiko Nakamura
    • 3
  1. 1.Institute of Robotics and Mechatronics, German Aerospace Center (DLR e.V.)WesslingGermany
  2. 2.Department of Mechanical EngineeringMichigan State UniversityEast LansingUSA
  3. 3.Department of Mechano-InformaticsUniversity of TokyoTokyoJapan

Personalised recommendations