Advertisement

Journal of Intelligent & Robotic Systems

, Volume 75, Issue 3–4, pp 393–411 | Cite as

Analysis and Verification of Repetitive Motion Planning and Feedback Control for Omnidirectional Mobile Manipulator Robotic Systems

  • Yunong Zhang
  • Weibing Li
  • Bolin Liao
  • Dongsheng Guo
  • Chen Peng
Article

Abstract

Mobile manipulator robotic systems (MMRSs) composed of a manipulator and a mobile platform are investigated in this paper. In order for the mobile manipulator robotic system (MMRS) to return to its initial state when the manipulator’s end-effector is requested to execute cyclical tasks, a quadratic program (QP) based repetitive motion planning and feedback control (RMPFC) scheme is proposed and analyzed. Such an RMPFC scheme can not only mix motion planning and reactive control, but also consider the physical limits of the robotic system. Mathematically, the efficacy of the RMPFC scheme is verified via gradient dynamics analysis. To further demonstrate the effectiveness of the RMPFC scheme, a kinematically redundant MMRS composed of a three degrees-of-freedom (DOF) planar manipulator and an omnidirectional mobile platform is designed, modeled and analyzed. Then, repetitive motion planning and feedback control for the designed omnidirectional MMRS is studied. Besides, a numerical algorithm is developed and presented to solve the QP and resolve the redundancy of the robotic system. Moreover, computer simulations are comparatively performed on such an omnidirectional MMRS, and simulation results substantiate the effectiveness, accuracy and superiority of the proposed RMPFC scheme.

Keywords

Mobile manipulator robotic system Quadratic program Repetitive motion planning Feedback control Numerical algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Y., Guo, D., Ma, S.: Different-level simultaneous minimization of joint-velocity and joint-torque for redundant robot manipulators. J. Intell. Robot. Syst. 72(3–4), 301–323 (2013)CrossRefGoogle Scholar
  2. 2.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer (2009)Google Scholar
  3. 3.
    Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer (2008)Google Scholar
  4. 4.
    Roberts, R.G., Maciejewski, A.A.: Repeatable generalized inverse control strategies for kinematically redundant manipulators. IEEE Trans. Autom. Control 38(5), 689–699 (1993)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Klein, C.A., Ahmed, S.: Repeatable pseudoinverse control for planar kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern. 25(12), 1657–1662 (1995)CrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Lv, X., Li, Z., Yang, Z., Chen, K.: Repetitive motion planning of PA10 robot arm subject to joint physical limits and using LVI-based primal-dual neural network. Mechatronics 18(9), 475–485 (2008)CrossRefGoogle Scholar
  7. 7.
    Khoogar, A.R., Tehrani, A.K., Tajdari, M.: A dual neural network for kinematic control of redundant manipulators using input pattern switching. J. Intell. Robot. Syst. 63(1), 101–113 (2011)CrossRefGoogle Scholar
  8. 8.
    Pott, P.P., Wagner, A., Badreddin, E., Weiser, H.-P., Schwarz, M.L.R.: Inverse dynamic model and a control application of a novel 6-DOF hybrid kinematics manipulator. J. Intell. Robot. Syst. 63(1), 3–23 (2011)CrossRefGoogle Scholar
  9. 9.
    Ning, K., Kulvicius, T., Tamosiunaite, M., Wörgötter, F.: A novel trajectory generation method for robot control. J. Intell. Robot. Syst. 68(2), 165–184 (2012)CrossRefGoogle Scholar
  10. 10.
    Tchoń, K., Jakubiak, J.: A repeatable inverse kinematics algorithm with linear invariant subspaces for mobile manipulators. IEEE Trans. Syst. Man Cybern. B 35(5), 1051–1057 (2005)CrossRefGoogle Scholar
  11. 11.
    Do, K.D., Seet, G.: Motion control of a two-wheeled mobile vehicle with an inverted pendulum. J. Intell. Robot. Syst. 60(3–4), 577–605 (2010)CrossRefMATHGoogle Scholar
  12. 12.
    Mantegh, I., Jenkin, M.R.M., Goldenberg, A.A.: Path planning for autonomous mobile robots using the boundary integral equation method. J. Intell. Robot. Syst. 59(2), 191–220 (2010)CrossRefMATHGoogle Scholar
  13. 13.
    Andaluz, V., Carelli, R., Salinas, L., Toibero, J.M., Roberti, F.: Visual control with adaptive dynamical compensation for 3D target tracking by mobile manipulators. Mechatronics 22(4), 491–502 (2012)CrossRefGoogle Scholar
  14. 14.
    Lee, H., Jung, S.: Balancing and navigation control of a mobile inverted pendulum robot using sensor fusion of low cost sensors. Mechatronics 22(1), 95–105 (2012)CrossRefGoogle Scholar
  15. 15.
    Hoy, M., Matveev, A.S., Savkin, A.V.: Collision free cooperative navigation of multiple wheeled robots in unknown cluttered environments. Robot. Auton. Syst. 60(10), 1253–1266 (2012)CrossRefGoogle Scholar
  16. 16.
    Jun, B.-H., Lee, J., Lee, P.-M.: Repetitive periodic motion planning and directional drag optimization of underwater articulated robotic arms. Int. J. Control Autom. Syst. 4(1), 42–52 (2006)Google Scholar
  17. 17.
    Bowling, A., Harmeyer, S.: Repeatable redundant manipulator control using nullspace quasi-velocities. ASME J. Dynam. Syst. Meas. Control 132(3), 031007 (2010)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Tan, Z., Chen, K., Yang, Z., Lv, X.: Repetitive motion of redundant robots planned by three kinds of recurrent neural networks and illustrated with a four-link planar manipulator’s straight-line example. Robot. Auton. Syst. 57(6–7), 645–651 (2009)CrossRefGoogle Scholar
  19. 19.
    Zhang, Z., Zhang, Y.: Acceleration-level cyclic-motion generation of constrained redundant robots tracking different paths. IEEE Trans. Syst. Man Cybern. B 42(4), 1257–1269 (2012)CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Wu, H., Zhang, Z., Xiao, L., Guo, D.: Acceleration-level repetitive motion planning of redundant planar robots solved by a simplified LVI-based primal-dual neural network. Robot. Comput. Int. Manuf. 29(2), 328–343 (2013)CrossRefGoogle Scholar
  21. 21.
    Campion, G., Bastin, G., D’Andréa-Novel, B.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. Autom. 12(1), 47–62 (1996)CrossRefGoogle Scholar
  22. 22.
    Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. MIT Press (2004)Google Scholar
  23. 23.
    Saha, S.K.: Introduction to Robotics. Tata McGraw-Hill Education (2008)Google Scholar
  24. 24.
    Craig, J.J.: Introduction to Robotics: Mechanics and Control. Pearson Education (2008)Google Scholar
  25. 25.
    Zhang, Y., Yi, C.: Zhang Neural Networks and Neural-Dynamic Method. Nova (2011)Google Scholar
  26. 26.
    Zhang, Y., Guo, D., Li, K., Li, J.: Manipulability-maximizing self-motion planning and control of redundant manipulators with experimental validation. In: Proceedings of the IEEE International Conference Mechatronics and Automation, pp. 1829–1834 (2012)Google Scholar
  27. 27.
    He, B.: A new method for a class of linear variational inequalities. Math. Program. 66(1–3), 137–144 (1994)CrossRefMATHGoogle Scholar
  28. 28.
    Zhang, Z., Zhang, Y.: Variable joint-velocity limits of redundant robot manipulators handled by quadratic programming. IEEE/ASME Trans. Mechatron. 18(2), 674–686 (2013)CrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Li, J., Zhang, Z.: A time-varying coefficient-based manipulability-maximizing scheme for motion control of redundant robots subject to varying joint-velocity limits. Optim. Contr. Appl. Meth. 34(2), 202–215 (2013)CrossRefMATHGoogle Scholar
  30. 30.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley (1993)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yunong Zhang
    • 1
  • Weibing Li
    • 1
  • Bolin Liao
    • 1
    • 2
  • Dongsheng Guo
    • 1
  • Chen Peng
    • 1
  1. 1.School of Information Science and TechnologySun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.College of Information Science and Engineering, Jishou UniversityJishouPeople’s Republic of China

Personalised recommendations