Mechanism and Control of Continuous-State Coupled Elastic Actuation

  • Tzu-Hao Huang
  • Han-Pang Huang
  • Jiun-Yih Kuan


Focusing on the physical interaction between people and machines within safety constraints in versatile situations, this paper proposes a new, efficient, coupled elastic actuation (CEA) to provide future human-machine systems with an intrinsically programmable stiffness capacity to shape the output force corresponding to the deviation between human motions and the set positions of the system. As a possible CEA system, a prototype of a two degrees of freedom (2-DOF) continuous-state coupled elastic actuator (CCEA) is designed to provide a compromise between performance and safety. Using a pair of antagonistic four-bar linkages, the inherent stiffness of the system can be adjusted dynamically. In addition, the optimal control in a simple various stiffness model is used to illustrate how to find the optimal stiffness and force trajectories. Using the optimal control results, the shortest distance control is proposed to control the stiffness and force trajectory of the CCEA. Compared to state-of-the-art variable stiffness actuators, the CCEA system is unique in that it can achieve near-zero mechanical stiffness efficiently and the shortest distance control provides an easy way to control various stiffness mechanisms. Finally, a CCEA exoskeleton is built for elbow rehabilitation. Simulations and experiments are conducted to show the desired properties of the proposed CCEA system and the performance of the shortest distance control.


Variable stiffness mechanism Variable stiffness control Optimal control Continuous-state coupled elastic actuation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edsinger, A.: Robot Manipulation in Human Environments. Doctoral dissertation, Massachusetts Institute of Technology (2007)Google Scholar
  2. 2.
    Taix, M., Flavigne, D., Ferre, E.: Human interaction with motion planning algorithm. J. Intell. Robot. Syst. 67(3–4), 285–306 (2012)CrossRefGoogle Scholar
  3. 3.
    Luca, A.D., Albu-Schaffer, A., Haddadin, S., Hirzinger, G.: Collision detection and safe reaction with the DLR-III Lightweight manipulator arm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1623–1630. Beijing, China (2006)Google Scholar
  4. 4.
    Bonilla, I., Reyes, F., Mendoza, M., Gonzalez-Galvan, E.J.: A dynamic-compensation approach to impedance control of robot manipulators. J. Intell. Robot. Syst. 63(1), 51–73 (2011)CrossRefMATHGoogle Scholar
  5. 5.
    Correa, M., Hermosilla, G., Verschae, R., Ruiz-del-Solar, J.: Human detection and identification by robots using thermal and visual information in domestic environments. J. Intell. Robot. Syst. 66(1–2), 223–243 (2012)CrossRefGoogle Scholar
  6. 6.
    Edsinger-Gonzales, A., Weber, J.: Domo: A force sensing humanoid robot for manipulation research. In: Proceedings of the 4th IEEE-RAS International Conference on Humanoid Robots, pp. 273–291. Los Angeles, CA, USA (2004)Google Scholar
  7. 7.
    Lauria, M., Legault, M.-A., Lavoie, M.-A., Michaud, F.: High performance differential elastic actuator for robotic interaction tasks. In: AAAI Spring Symposium, pp. 39–41. Palo Alto, CA, USA (2007)Google Scholar
  8. 8.
    Sensinger, J.W., Weir, R.F.: Design and analysis of a non-backdrivable series elastic actuator. In: IEEE International Conference on Rehabilitation Robotics, pp. 390–393. Chicago, Illinois, USA (2005)Google Scholar
  9. 9.
    Torres-Jara, E., Banks, J.: A simple and scalable force actuator. In: Proceeding of 35th International Symposium on Robotics, Paris, France (2004)Google Scholar
  10. 10.
    Robinson, D.W.: Design and analysis of series elasticity in closed-loop actuator force control. Doctoral dissertation, Massachusetts Institute of Technology (2000)Google Scholar
  11. 11.
    Kyoungchul, K., Joonbum, B., Tomizuka, M.: Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications. IEEE/ASME Trans. Mech. 14(1), 105–118 (2009)CrossRefGoogle Scholar
  12. 12.
    Huang, T.H., Kuan, J.Y., Huang, H.P.: Design of a new variable stiffness actuator and application for assistive exercise control. In: Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 372–377. San Francisco, CA, USA (2011)Google Scholar
  13. 13.
    Kyoungchul, K., Joonbum, B., Tomizuka, M.: A compact rotary Series elastic actuator for human assistive systems. IEEE/ASME Trans. Mech. 17(2), 288–297 (2012)CrossRefGoogle Scholar
  14. 14.
    Bigge, B., Harvey, I.R.: Programmable springs: developing actuators with programmable compliance for autonomous robots. Robot. Auton. Syst. 55(9), 728–734 (2007)CrossRefGoogle Scholar
  15. 15.
    Hurst, J.W., Chestnutt, J.E., Rizzi, A.A.: An actuator with mechanically adjustable series compliance. In: CMU-RI-TR-04-24, Robotics Institute. Carnegie Mellon University, Pittsburgh, PA, USA (2004)Google Scholar
  16. 16.
    Wolf, S., Hirzinger, G.: A new variable stiffness design: matching requirements of the next robot generation. In: IEEE International Conference on Robotics and Automation, pp. 1741–1746. Pasadena, CA, USA (2008)Google Scholar
  17. 17.
    Migliore, S.A., Brown, E.A., DeWeerth, S.P.: Novel nonlinear elastic actuators for passively controlling robotic joint compliance. J. Mech. Design 129(4), 406–412 (2007)CrossRefGoogle Scholar
  18. 18.
    Park, J.-J., Kim, B.-S., Song, J.-B., Kim, H.-S.: Safe link mechanism based on nonlinear stiffness for collision safety. Mech. Mach. Theory 43(10), 1332–1348 (2007)CrossRefGoogle Scholar
  19. 19.
    Park, J.-J., Song, J.-B., Kim, H.-S.: Safe joint mechanism based on passive compliance for collision safety. In: Recent Progress in Robotics, pp. 49–61. Springer, Heidelberg (2008)Google Scholar
  20. 20.
    Schiavi, R., Grioli, G., Sen, S., Bicchi, A.: VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: IEEE International Conference on Robotics and Automation, pp. 2171–2176. Pasadena, CA, USA (2008)Google Scholar
  21. 21.
    Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimbock, T., Wolf, S., Hirzinger, G.: Soft robotics. IEEE Robot. Autom. Mag. 15(3), 20–30 (2008)CrossRefGoogle Scholar
  22. 22.
    Van Ham, R., Vanderborght, B., Van Damme, M., Verrelst, B., Lefeber, D.: MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robot. Auton. Syst. 55(10), 761–768 (2007)CrossRefGoogle Scholar
  23. 23.
    Lan, N., Crago, P.: Optimal control of antagonistic muscle stiffness during voluntary movements. Biol. Cybern. 71(2), 123–135 (1994)CrossRefMATHGoogle Scholar
  24. 24.
    Menegaldo, L.L., Fleury, A.d.T., Weber, H.I.: A ‘cheap’ optimal control approach to estimate muscle forces in musculoskeletal systems. J. Biomech. 39(10), 1787–1795 (2006)CrossRefGoogle Scholar
  25. 25.
    Ning, L., Crago, P.E.: Optimal control of muscle stiffnesses for FNS induced arm movements. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 13, no. 2, pp. 920–921. Orlando, FL, USA (1991)Google Scholar
  26. 26.
    Blaya, J.A., Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. 12(1), 24–31 (2004)CrossRefGoogle Scholar
  27. 27.
    Hollander, K.W., Sugar, T.G., Herring, D.E.: Adjustable robotic tendon using a ’Jack Spring’. In: International Conference on Rehabilitation Robotics, pp. 113–118. Chicago, IL, USA (2005)Google Scholar
  28. 28.
    Walker, D.S., Niemeyer, G.: Examining the benefits of variable impedance actuation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4855–4861. Taipei, Taiwan, ROC (2010)Google Scholar
  29. 29.
    Kolacinski, R.M., Quinn, R.D.: A novel biomimetic actuator system. Robot. Auton. Syst. 25(1–2), 1–18 (1998)CrossRefGoogle Scholar
  30. 30.
    Hurst, J.W., Chestnutt, J.E., Rizzi, A.A.: The actuator with mechanically adjustable series compliance. IEEE Trans. Robot. 26(4), 597–606 (2010)CrossRefGoogle Scholar
  31. 31.
    Visser, L.C., Carloni, R., Stramigioli, S.: Energy-efficient variable stiffness actuators. IEEE Trans. Robot. 27(5), 865–875 (2011)CrossRefGoogle Scholar
  32. 32.
    Leavitt, J., Jabbari, F., Boborw, J.E.: Optimal control and performance of variable stiffness devices for structural control. In: Proceedings of the American Control Conference, pp. 2499–2504. Portland, OR, USA (2005)Google Scholar
  33. 33.
    Braun, D., Howard, M., Vijayakumar, S.: Optimal variable stiffness control: formulation and application to explosive movement tasks. Auton. Robot. 33(3), 237–253 (2012)CrossRefGoogle Scholar
  34. 34.
    Hadiyanto, H., Esveld, D.C., Boom, R.M., van Straten, G., van Boxtel, A.J.B.: Control vector parameterization with sensitivity based refinement applied to baking optimization. Food Bioprod. Process. 86(2), 130–141 (2008)CrossRefGoogle Scholar
  35. 35.
    Coleman, T., Branch, M.A., Grace, A.: Optimization Toolbox for Use with MATLAB: User’s Guide Version 2. MathWorks, Inc. (1998)Google Scholar
  36. 36.
    Hayet, J.B.: Shortest length paths for a differential drive robot keeping a set of landmarks in sight. J. Intell. Robot. Syst. 66(1–2), 57–74 (2012)CrossRefMATHGoogle Scholar
  37. 37.
    Farahat, W.A., Herr, H.M.: Optimal workloop energetics of muscle-actuated systems: an impedance matching view. PLoS Comput. Biol. 6(6), e1000795 (2010)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Taiwan UniversityTaipeiTaiwan
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations