Skip to main content
Log in

Mechanism and Control of Continuous-State Coupled Elastic Actuation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Focusing on the physical interaction between people and machines within safety constraints in versatile situations, this paper proposes a new, efficient, coupled elastic actuation (CEA) to provide future human-machine systems with an intrinsically programmable stiffness capacity to shape the output force corresponding to the deviation between human motions and the set positions of the system. As a possible CEA system, a prototype of a two degrees of freedom (2-DOF) continuous-state coupled elastic actuator (CCEA) is designed to provide a compromise between performance and safety. Using a pair of antagonistic four-bar linkages, the inherent stiffness of the system can be adjusted dynamically. In addition, the optimal control in a simple various stiffness model is used to illustrate how to find the optimal stiffness and force trajectories. Using the optimal control results, the shortest distance control is proposed to control the stiffness and force trajectory of the CCEA. Compared to state-of-the-art variable stiffness actuators, the CCEA system is unique in that it can achieve near-zero mechanical stiffness efficiently and the shortest distance control provides an easy way to control various stiffness mechanisms. Finally, a CCEA exoskeleton is built for elbow rehabilitation. Simulations and experiments are conducted to show the desired properties of the proposed CCEA system and the performance of the shortest distance control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edsinger, A.: Robot Manipulation in Human Environments. Doctoral dissertation, Massachusetts Institute of Technology (2007)

  2. Taix, M., Flavigne, D., Ferre, E.: Human interaction with motion planning algorithm. J. Intell. Robot. Syst. 67(3–4), 285–306 (2012)

    Article  Google Scholar 

  3. Luca, A.D., Albu-Schaffer, A., Haddadin, S., Hirzinger, G.: Collision detection and safe reaction with the DLR-III Lightweight manipulator arm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1623–1630. Beijing, China (2006)

  4. Bonilla, I., Reyes, F., Mendoza, M., Gonzalez-Galvan, E.J.: A dynamic-compensation approach to impedance control of robot manipulators. J. Intell. Robot. Syst. 63(1), 51–73 (2011)

    Article  MATH  Google Scholar 

  5. Correa, M., Hermosilla, G., Verschae, R., Ruiz-del-Solar, J.: Human detection and identification by robots using thermal and visual information in domestic environments. J. Intell. Robot. Syst. 66(1–2), 223–243 (2012)

    Article  Google Scholar 

  6. Edsinger-Gonzales, A., Weber, J.: Domo: A force sensing humanoid robot for manipulation research. In: Proceedings of the 4th IEEE-RAS International Conference on Humanoid Robots, pp. 273–291. Los Angeles, CA, USA (2004)

  7. Lauria, M., Legault, M.-A., Lavoie, M.-A., Michaud, F.: High performance differential elastic actuator for robotic interaction tasks. In: AAAI Spring Symposium, pp. 39–41. Palo Alto, CA, USA (2007)

  8. Sensinger, J.W., Weir, R.F.: Design and analysis of a non-backdrivable series elastic actuator. In: IEEE International Conference on Rehabilitation Robotics, pp. 390–393. Chicago, Illinois, USA (2005)

  9. Torres-Jara, E., Banks, J.: A simple and scalable force actuator. In: Proceeding of 35th International Symposium on Robotics, Paris, France (2004)

  10. Robinson, D.W.: Design and analysis of series elasticity in closed-loop actuator force control. Doctoral dissertation, Massachusetts Institute of Technology (2000)

  11. Kyoungchul, K., Joonbum, B., Tomizuka, M.: Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications. IEEE/ASME Trans. Mech. 14(1), 105–118 (2009)

    Article  Google Scholar 

  12. Huang, T.H., Kuan, J.Y., Huang, H.P.: Design of a new variable stiffness actuator and application for assistive exercise control. In: Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 372–377. San Francisco, CA, USA (2011)

  13. Kyoungchul, K., Joonbum, B., Tomizuka, M.: A compact rotary Series elastic actuator for human assistive systems. IEEE/ASME Trans. Mech. 17(2), 288–297 (2012)

    Article  Google Scholar 

  14. Bigge, B., Harvey, I.R.: Programmable springs: developing actuators with programmable compliance for autonomous robots. Robot. Auton. Syst. 55(9), 728–734 (2007)

    Article  Google Scholar 

  15. Hurst, J.W., Chestnutt, J.E., Rizzi, A.A.: An actuator with mechanically adjustable series compliance. In: CMU-RI-TR-04-24, Robotics Institute. Carnegie Mellon University, Pittsburgh, PA, USA (2004)

  16. Wolf, S., Hirzinger, G.: A new variable stiffness design: matching requirements of the next robot generation. In: IEEE International Conference on Robotics and Automation, pp. 1741–1746. Pasadena, CA, USA (2008)

  17. Migliore, S.A., Brown, E.A., DeWeerth, S.P.: Novel nonlinear elastic actuators for passively controlling robotic joint compliance. J. Mech. Design 129(4), 406–412 (2007)

    Article  Google Scholar 

  18. Park, J.-J., Kim, B.-S., Song, J.-B., Kim, H.-S.: Safe link mechanism based on nonlinear stiffness for collision safety. Mech. Mach. Theory 43(10), 1332–1348 (2007)

    Article  Google Scholar 

  19. Park, J.-J., Song, J.-B., Kim, H.-S.: Safe joint mechanism based on passive compliance for collision safety. In: Recent Progress in Robotics, pp. 49–61. Springer, Heidelberg (2008)

    Google Scholar 

  20. Schiavi, R., Grioli, G., Sen, S., Bicchi, A.: VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: IEEE International Conference on Robotics and Automation, pp. 2171–2176. Pasadena, CA, USA (2008)

  21. Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimbock, T., Wolf, S., Hirzinger, G.: Soft robotics. IEEE Robot. Autom. Mag. 15(3), 20–30 (2008)

    Article  Google Scholar 

  22. Van Ham, R., Vanderborght, B., Van Damme, M., Verrelst, B., Lefeber, D.: MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robot. Auton. Syst. 55(10), 761–768 (2007)

    Article  Google Scholar 

  23. Lan, N., Crago, P.: Optimal control of antagonistic muscle stiffness during voluntary movements. Biol. Cybern. 71(2), 123–135 (1994)

    Article  MATH  Google Scholar 

  24. Menegaldo, L.L., Fleury, A.d.T., Weber, H.I.: A ‘cheap’ optimal control approach to estimate muscle forces in musculoskeletal systems. J. Biomech. 39(10), 1787–1795 (2006)

    Article  Google Scholar 

  25. Ning, L., Crago, P.E.: Optimal control of muscle stiffnesses for FNS induced arm movements. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 13, no. 2, pp. 920–921. Orlando, FL, USA (1991)

  26. Blaya, J.A., Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Neural Syst. Rehabil. Eng. 12(1), 24–31 (2004)

    Article  Google Scholar 

  27. Hollander, K.W., Sugar, T.G., Herring, D.E.: Adjustable robotic tendon using a ’Jack Spring’. In: International Conference on Rehabilitation Robotics, pp. 113–118. Chicago, IL, USA (2005)

  28. Walker, D.S., Niemeyer, G.: Examining the benefits of variable impedance actuation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4855–4861. Taipei, Taiwan, ROC (2010)

  29. Kolacinski, R.M., Quinn, R.D.: A novel biomimetic actuator system. Robot. Auton. Syst. 25(1–2), 1–18 (1998)

    Article  Google Scholar 

  30. Hurst, J.W., Chestnutt, J.E., Rizzi, A.A.: The actuator with mechanically adjustable series compliance. IEEE Trans. Robot. 26(4), 597–606 (2010)

    Article  Google Scholar 

  31. Visser, L.C., Carloni, R., Stramigioli, S.: Energy-efficient variable stiffness actuators. IEEE Trans. Robot. 27(5), 865–875 (2011)

    Article  Google Scholar 

  32. Leavitt, J., Jabbari, F., Boborw, J.E.: Optimal control and performance of variable stiffness devices for structural control. In: Proceedings of the American Control Conference, pp. 2499–2504. Portland, OR, USA (2005)

  33. Braun, D., Howard, M., Vijayakumar, S.: Optimal variable stiffness control: formulation and application to explosive movement tasks. Auton. Robot. 33(3), 237–253 (2012)

    Article  Google Scholar 

  34. Hadiyanto, H., Esveld, D.C., Boom, R.M., van Straten, G., van Boxtel, A.J.B.: Control vector parameterization with sensitivity based refinement applied to baking optimization. Food Bioprod. Process. 86(2), 130–141 (2008)

    Article  Google Scholar 

  35. Coleman, T., Branch, M.A., Grace, A.: Optimization Toolbox for Use with MATLAB: User’s Guide Version 2. MathWorks, Inc. (1998)

  36. Hayet, J.B.: Shortest length paths for a differential drive robot keeping a set of landmarks in sight. J. Intell. Robot. Syst. 66(1–2), 57–74 (2012)

    Article  MATH  Google Scholar 

  37. Farahat, W.A., Herr, H.M.: Optimal workloop energetics of muscle-actuated systems: an impedance matching view. PLoS Comput. Biol. 6(6), e1000795 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Pang Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, TH., Huang, HP. & Kuan, JY. Mechanism and Control of Continuous-State Coupled Elastic Actuation. J Intell Robot Syst 74, 571–587 (2014). https://doi.org/10.1007/s10846-013-9937-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9937-0

Keywords

Navigation