Advances in Modeling and Control of Tethered Unmanned Helicopters to Enhance Hovering Performance

  • Luis A. Sandino
  • Manuel Bejar
  • Konstantin Kondak
  • Anibal Ollero


The hovering capabilities of unmanned helicopters can be seriously affected by wind. One possible solution for improving hovering performance under such circumstances is the use of a tethered setup that takes advantage of the tension exerted on the cable that links the helicopter to the ground. This paper presents a more elaborate strategy for helicopter control in this augmented setup, that extends previous work on the subject by the authors. Particularly, a combination of classical PID control laws, together with model inversion blocks, constitutes the basis of the new controller. Additionally, feed-forward action for counteracting rotational couplings is also taken into account. The resulting nonlinear control structure considers also a viscoelastic model of the tether which accurately reproduce the behavior of real ropes. Several simulations under artificially generated wind influences are presented to endorse the validity of the new proposed controller.


Unmanned aerial systems Helicopter Tethered systems Modeling Model-based control  PID Stability augmentation 

Mathematics Subject Classifications (2010)

93C10 93C85 93C95 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10846_2013_9910_MOESM1_ESM.mpg (4.4 mb)
(MPG 4.42 MB)
10846_2013_9910_MOESM2_ESM.mpg (4.5 mb)
(MPG 4.54 MB)


  1. 1.
    Ahmed, B., Pota, H.: Backstepping-based landing control of a RUAV using tether incorporating flapping correction dynamics. In: Proceedings of the American Control Conference, pp. 2728–2733 (2008)Google Scholar
  2. 2.
    Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 28(6), 914–931 (2011)CrossRefGoogle Scholar
  3. 3.
    Kane, T.R., Levinson, D.A.: Dynamics. Theory and Applications. McGraw-Hill (1985)Google Scholar
  4. 4.
    Kondak, K., Bernard, M., Losse, N., Hommel, G.: Elaborated modeling and control for autonomous small size helicopters. VDI Berichte 1956, 207–216 (2006)Google Scholar
  5. 5.
    Leuthäusser, U.: Physics of climbing, part 1: Viscoelastic theory of climbing ropes. (2012). Accessed Aug 2013
  6. 6.
    Leuthäusser, U.: Physics of climbing, part 3: Viscous and dry friction combined, rope control and experiments. (2012). Accessed Aug 2013
  7. 7.
    Oh, S., Pathak, K., Agrawal, S.K., Pota, H.R., Garratt, M.: Approaches for a tether-guided landing of an autonomous helicopter. IEEE Trans. Robot. 22(3), 536–544 (2006)CrossRefGoogle Scholar
  8. 8.
    Pavier, M.: Experimental and theoretical simulations of climbing falls. Sports Eng. 1(2), 79–91 (1998)CrossRefGoogle Scholar
  9. 9.
    Rye, D.: Longitudinal stability of a hovering, tethered rotorcraft. J. Guid. Control Dyn. 8(6), 743–752 (1985)CrossRefGoogle Scholar
  10. 10.
    Sandino, L., Bejar, M., Kondak, K., Ollero, A.: On the use of tethered configurations for augmenting hovering stability in small-size autonomous helicopters. J. Intell. Robot. Syst. 70, 509–525 (2013)CrossRefGoogle Scholar
  11. 11.
    Sandino, L., Bejar, M., Ollero, A.: A survey on methods for elaborated modeling of the mechanics of a small-size helicopter. Analysis and comparison. J. Intell. Robot. Syst. 1–20 (2013). doi: 10.1007/s10846-013-9821-y
  12. 12.
    Schmidt, G., Swik, R.: Automatic hover control of an unmanned tethered rotorplatform. Automatica 10(4), 393–403 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Luis A. Sandino
    • 1
  • Manuel Bejar
    • 2
  • Konstantin Kondak
    • 3
  • Anibal Ollero
    • 1
    • 4
  1. 1.GRVCUniversity of SevilleSevilleSpain
  2. 2.GRVCUniversity Pablo de OlavideSevilleSpain
  3. 3.German Aerospace Agency (DLR)WesslingGermany
  4. 4.Center for Advanced Aerospace Technologies (CATEC)SevilleSpain

Personalised recommendations