Journal of Intelligent & Robotic Systems

, Volume 73, Issue 1–4, pp 19–31 | Cite as

Model-Based Helicopter UAV Control: Experimental Results



Small helicopter dynamics are coupled, nonlinear, and underactuated. Therefore, helicopter control poses a challenging problem which is of wide interest due to possible applications. Although helicopter UAV control is an applied research field, there are relatively few experimental results. Previously published experimental results for attitude control are extended to include position control for time-varying reference trajectories. The translational control is derived in both the navigation and body-fixed frames, and the resulting expressions are shown to be locally equivalent. Closed-loop stability is shown using a Lyapunov analysis and conditions for asymptotic stability on the gains are derived.


Helicopter UAV autopilot Experimental helicopter platform Model-based control Helicopter modeling and control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castillo, P., Lozano, R., Dzul, A.E.: Modelling and Control of Mini-Flying Machines. Springer, London (2005)Google Scholar
  2. 2.
    Farrell, J.A.: Aided Navigation: GPS with High Rate Sensors. McGraw-Hill, New York (2008)Google Scholar
  3. 3.
    Godbolt, B., Lynch, A.F.: Control-oriented physical input modelling for a helicopter UAV. J. Intell. Robot. Syst. (2014). doi: 10.1007/s10846-013-9933-4 Google Scholar
  4. 4.
    Godbolt, B., Vitzilaios, N., Bergen, C., Lynch, A.F.: Experimental validation of a helicopter autopilot: time-varying trajectory tracking. In: Proceedings of the 2013 International Conference on Unmanned Aircraft Systems, Atlanta, pp. 391–396 (2013)Google Scholar
  5. 5.
    Godbolt, B., Vitzilaios, N.I., Lynch, A.F.: Experimental validation of a helicopter autopilot design using model-based PID control. J. Intell. Robot. Syst. 70, 385–399 (2013)CrossRefGoogle Scholar
  6. 6.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRefMATHGoogle Scholar
  7. 7.
    Isidori, A., Marconi, L., Serrani, A.: Robust nonlinear motion control of a helicopter. IEEE Trans. Autom. Control 48, 413–426 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kannan, S.K.: Adaptive control of systems in cascade with saturation. Ph.D. thesis, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta (2005)Google Scholar
  9. 9.
    Kelly, R.: A tuning procedure for stable PID control of robot manipulators. Robotica 13, 141–148 (1995)CrossRefGoogle Scholar
  10. 10.
    Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29, 315–378 (2012)CrossRefGoogle Scholar
  11. 11.
    Kendoul, F., Fantoni, I., Lozano, R.: Asymptotic stability of hierarchical inner-outer loop-based flight controllers. In: 17th IFAC World Congress, Seoul, pp. 1741–1746 (2008)Google Scholar
  12. 12.
    Koo, T.J., Sastry, S.: Output tracking control design of a helicopter model based on approximate linearization. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, pp. 3635–3640 (1998)Google Scholar
  13. 13.
    Mahony, R., Hamel, T.: Robust trajectory tracking for a scale model autonomous helicopter. Int. J. Robust Nonlinear Control 14, 1035–1059 (2004)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Marconi, L., Naldi, R.: Robust full degree-of-freedom tracking control of a helicopter. Automatica 43, 1909–1920 (2007)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    van Nieuwstadt, M.J., Murray, R.M.: Outer flatness: trajectory generation for a model helicopter. In: Proceedings of the European Control Conference (CD-ROM), Brussels (1997)Google Scholar
  16. 16.
    Raptis, I.A., Valavanis, K.P., Moreno, W.A.: A novel nonlinear backstepping controller design for helicopters using the rotation matrix. IEEE Trans. Control Syst. Technol. 19, 465–473 (2011)CrossRefGoogle Scholar
  17. 17.
    Tsiotras, P.: Further passivity results for the attitude control problem. IEEE Trans. Autom. Control 43, 1597–1600 (1998)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    ANCL/autopilot - Github: (2012). Accessed 5 June 2013

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Applied Nonlinear Controls Laboratory, Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations