Skip to main content
Log in

Model-Based Helicopter UAV Control: Experimental Results

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Small helicopter dynamics are coupled, nonlinear, and underactuated. Therefore, helicopter control poses a challenging problem which is of wide interest due to possible applications. Although helicopter UAV control is an applied research field, there are relatively few experimental results. Previously published experimental results for attitude control are extended to include position control for time-varying reference trajectories. The translational control is derived in both the navigation and body-fixed frames, and the resulting expressions are shown to be locally equivalent. Closed-loop stability is shown using a Lyapunov analysis and conditions for asymptotic stability on the gains are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castillo, P., Lozano, R., Dzul, A.E.: Modelling and Control of Mini-Flying Machines. Springer, London (2005)

    Google Scholar 

  2. Farrell, J.A.: Aided Navigation: GPS with High Rate Sensors. McGraw-Hill, New York (2008)

    Google Scholar 

  3. Godbolt, B., Lynch, A.F.: Control-oriented physical input modelling for a helicopter UAV. J. Intell. Robot. Syst. (2014). doi:10.1007/s10846-013-9933-4

    Google Scholar 

  4. Godbolt, B., Vitzilaios, N., Bergen, C., Lynch, A.F.: Experimental validation of a helicopter autopilot: time-varying trajectory tracking. In: Proceedings of the 2013 International Conference on Unmanned Aircraft Systems, Atlanta, pp. 391–396 (2013)

  5. Godbolt, B., Vitzilaios, N.I., Lynch, A.F.: Experimental validation of a helicopter autopilot design using model-based PID control. J. Intell. Robot. Syst. 70, 385–399 (2013)

    Article  Google Scholar 

  6. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  7. Isidori, A., Marconi, L., Serrani, A.: Robust nonlinear motion control of a helicopter. IEEE Trans. Autom. Control 48, 413–426 (2003)

    Article  MathSciNet  Google Scholar 

  8. Kannan, S.K.: Adaptive control of systems in cascade with saturation. Ph.D. thesis, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta (2005)

  9. Kelly, R.: A tuning procedure for stable PID control of robot manipulators. Robotica 13, 141–148 (1995)

    Article  Google Scholar 

  10. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29, 315–378 (2012)

    Article  Google Scholar 

  11. Kendoul, F., Fantoni, I., Lozano, R.: Asymptotic stability of hierarchical inner-outer loop-based flight controllers. In: 17th IFAC World Congress, Seoul, pp. 1741–1746 (2008)

  12. Koo, T.J., Sastry, S.: Output tracking control design of a helicopter model based on approximate linearization. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, pp. 3635–3640 (1998)

  13. Mahony, R., Hamel, T.: Robust trajectory tracking for a scale model autonomous helicopter. Int. J. Robust Nonlinear Control 14, 1035–1059 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Marconi, L., Naldi, R.: Robust full degree-of-freedom tracking control of a helicopter. Automatica 43, 1909–1920 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. van Nieuwstadt, M.J., Murray, R.M.: Outer flatness: trajectory generation for a model helicopter. In: Proceedings of the European Control Conference (CD-ROM), Brussels (1997)

  16. Raptis, I.A., Valavanis, K.P., Moreno, W.A.: A novel nonlinear backstepping controller design for helicopters using the rotation matrix. IEEE Trans. Control Syst. Technol. 19, 465–473 (2011)

    Article  Google Scholar 

  17. Tsiotras, P.: Further passivity results for the attitude control problem. IEEE Trans. Autom. Control 43, 1597–1600 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. ANCL/autopilot - Github: http://github.com/ANCL/autopilot (2012). Accessed 5 June 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan F. Lynch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godbolt, B., Lynch, A.F. Model-Based Helicopter UAV Control: Experimental Results. J Intell Robot Syst 73, 19–31 (2014). https://doi.org/10.1007/s10846-013-9898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9898-3

Keywords

Navigation