Advertisement

Journal of Intelligent & Robotic Systems

, Volume 76, Issue 3–4, pp 563–582 | Cite as

Gaussian-Process-Based Real-Time Ground Segmentation for Autonomous Land Vehicles

  • Tongtong Chen
  • Bin Dai
  • Ruili Wang
  • Daxue Liu
Article

Abstract

Ground segmentation is a key component for Autonomous Land Vehicle (ALV) navigation in an outdoor environment. This paper presents a novel algorithm for real-time segmenting three-dimensional scans of various terrains. An individual terrain scan is represented as a circular polar grid map that is divided into a number of segments. A one-dimensional Gaussian Process (GP) regression with a non-stationary covariance function is used to distinguish the ground points or obstacles in each segment. The proposed approach splits a large-scale ground segmentation problem into many simple GP regression problems with lower complexity, and can then get a real-time performance while yielding acceptable ground segmentation results. In order to verify the effectiveness of our approach, experiments have been carried out both on a public dataset and the data collected by our own ALV in different outdoor scenes. Our approach has been compared with two previous ground segmentation techniques. The results show that our approach can get a better trade-off between computational time and accuracy. Thus, it can lead to successive object classification and local path planning in real time. Our approach has been successfully applied to our ALV, which won the championship in the 2011 Chinese Future Challenge in the city of Ordos.

Keywords

Autonomous land vehicle Ground segmentation Gaussian process 3D point cloud 

Mathematics Subject Classifications (2010)

68T45 68T40 60G15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abuhashim, T., Sukkarieh, S.: Incorporating geometric information into Gaussian process terrain models from monocular images. In: Internation Conference on Intelligent Robots and Systems (IROS), pp. 4162–4168 (2012)Google Scholar
  2. 2.
    Chen, T., Dai, B., Liu, D., Liu, Z.: Lidar-based long range road intersection detection. In: Sixth International Conference on Image and Graphics, pp. 754–759 (2011)Google Scholar
  3. 3.
    Chen, T., Dai, B., Liu, D., Zhang, B., Liu, Q.: 3d lidar-based ground segmentation. In: Asian Conference on Pattern Recognition, pp. 446–450 (2011)Google Scholar
  4. 4.
    Douillard, B., Nourani-Vatani, N., Johnson-Roberson, M., Williams, S., Roman, C., Pizarro, O., Vaughn, I., Inglis, G.: Fft-based terrain segmentation for underwater mapping. In: The 2012 Robotics: Science and Systems Conference (RSS) (2012)Google Scholar
  5. 5.
    Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V., Quadros, A., Morton, P., Frenkel, A.: On the segmentation of 3d lidar point clouds. In: International Conference on Robotics and Automation (ICRA), pp. 2798–2805. Shanghai, China (2011)Google Scholar
  6. 6.
    Douillard, B., Underwood, J., Melkumyan, N., Singh, S., Vasudevan, S., Brunner, C., Quadros, A.: Hybrid elevation maps: 3d sruface models for segmentation. In: International Conference on Intelligent Robots and Systems (IROS), pp. 1532–1538. Taiwan (2010)Google Scholar
  7. 7.
    Filitchkin, P., Byl, K.: Feature-based terrain classification for littledog. In: Internation Conference on Intelligent Robots and Systems (IROS), pp. 1387–1392 (2012)Google Scholar
  8. 8.
    Gu, J., Cao, Q., Huang, Y.: Rapid traversability assessment in 2.5d grid-based map on rough terrain. Int. J. Adv. Robot. Syst. 5(4), 389–394 (2008)Google Scholar
  9. 9.
    Guo, Y., Song, A., Bao, J., Tang, H., Cui, J.: A combination of terrain prediction and correction for search and rescue robot autonomous navigation. Int. J. Adv. Robot. Syst. 6(3), 207–214 (2009)Google Scholar
  10. 10.
    Hadjiliadis, O., Stamos, I.: Sequential classification in point clouds of urban scenes. In: Fifth International Symposium on 3D Data Processing, Visualization and Transmission (2010)Google Scholar
  11. 11.
    Hadsell, R., Bagnell, J., Huber, D., Hebert, M.: Non-stationary space-carving kernels for accurate rough terrain estimation. Int. J. Robot. Res. (IJRR) 29(8), 981–996 (2010)CrossRefGoogle Scholar
  12. 12.
    Hemakumara, M., Sukkarieh, S.: Non-parametric uav system identification with dependent gaussian processes. In: International Conference on Robotics and Automation (ICRA), pp. 4435–4441 (2010)Google Scholar
  13. 13.
    Himmelsbach, M., Hundelshausen, F., Wuensche, H.: Fast segmentation of 3d point clouds for ground vehicles. In: IEEE Intelligent Vehicles Symposium (IV), pp. 560–565. USA (2010)Google Scholar
  14. 14.
    Hu, T., Qi, B., Wu, T., Xu, X., He, H.: Stereo matching using weighted dynamic programming on a singledirection four-connected tree. Comp. Vision Image Underst. (CVIU) 116(8), 921–928 (2012)Google Scholar
  15. 15.
    Inc, V.L.: HDL 64E S2 Uesr’s Manual. Morgan Hill, CA 95037 (2008)Google Scholar
  16. 16.
    Lai, K., Fox, D.: Object recognition in 3d point clouds using web data and domain adaptation. Int. J. Robot. Res. (IJRR) 29(8), 1019–1037 (2010)CrossRefGoogle Scholar
  17. 17.
    Lang, T., Plagemann, C., Burgard, W.: Adaptive non-stationary kernel regression for terrain modeling. In: Robotics: Science and Systems Conference (RSS) (2007)Google Scholar
  18. 18.
    Muhammad, N., Lacroix, S.: Calibration of a rotating multi-beam lidar. In: International Conference on Intelligent Robots and Systems (IROS), pp. 5648–5653. Taiwan (2010)Google Scholar
  19. 19.
    Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R.: A comparison of line extraction algorithms using 2d laser rangefinder for indoor mobile robotics. In: International Conference on Intelligent Robots and Systems (IROS), pp. 1929–1934. Canada (2005)Google Scholar
  20. 20.
    Ortigosa, N., Morillas, S., Peris-Fajarnes, G.: Obstacle-free pathway detection by means of depth maps. J. Intell. Robot. Syst. 53, 115–129 (2010)Google Scholar
  21. 21.
    Paciorek, C., Schervish, M.: Nonstationary covariance function for Gaussian process regression. In: Processings of the Conference on Neural Information Processing Systems (NIPS) (2004)Google Scholar
  22. 22.
    Plageman, C., Kersting, K., Burgard, W.: Nonstationary gaussian process regression using point estimates of local smoothness. In: The European Conference on Machine Learning (ECML), pp. 204–219. Belgium (2008)Google Scholar
  23. 23.
    Plagemann, C., Mischke, S., Prentics, S., Kersting, K., Roy, N., Burgard, W.: Learning predictive terrain models for legged robot locomotion. In: International Conference on Intelligent Robots and Systems (IROS), pp. 3545–3552 (2008)Google Scholar
  24. 24.
    Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. The MIT Press, England (2006)MATHGoogle Scholar
  25. 25.
    Rusu, R., Cousins, S.: 3d is here: point cloud library (pcl). In: International Conference on Robotics and Automation (ICRA), pp. 1–4 (2011)Google Scholar
  26. 26.
    Stamos, I., Hadjiliadis, O., Zhang, H., Flynn, T.: Online algorithms for classification of urban objects in 3d point clouds. In: International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), pp. 332–339 (2012)Google Scholar
  27. 27.
    Sun, Z., Chen, Q., Nie, Y., Liu, D., He, H.: Ribbon model based path tracking method for autonomous land vehicle. In: Internation Conference on Intelligent Robots and Systems (IROS), pp. 1220–1226 (2012)Google Scholar
  28. 28.
    Sung, G., Kwak, D., Lyou, J.: Neural network based terrain classification using wavelet features. J. Intell. Robot. Syst. 59, 269–281 (2010)CrossRefMATHGoogle Scholar
  29. 29.
    Thrun, S., et al.: Stanley: the robot that won the darpa grand challenge. Journal of Filed Robotics (JFR) 23(9), 661–692 (2006)CrossRefGoogle Scholar
  30. 30.
    Vasudevan, S., Ramos, F., Nettleton, E., Whyte, H.: Heteroscedastic Gaussian processes for data fusion in large-scale terrain modeling. In: International Conference on Robotics and Automation (ICRA), pp. 3452–3459 (2010)Google Scholar
  31. 31.
    Vasudevan, S., Ramos, F., Nettleton, E., Whyte, H.: Non-stationary dependent gaussian processes for data fusion in large-scale terrain modeling. In: International Conference on Robotics and Automation (ICRA), pp. 1875–1882. Shanghai, China (2011)Google Scholar
  32. 32.
    Wang, M., Zhou, J., Tu, J., C.L., L.: Learning long-range terrain perception for autonomous mobile robots. Int. J. Adv. Robot. Syst. 7(1), 55–66 (2010)Google Scholar
  33. 33.
    Xiao, L., Dai, B., Wu, T., Fang, Y.: Unstructured road segmentation based on spare representation. In: National Conference on Image and Graphic. Changchun, China (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of Mechatronic Engineering and AutomationNational University of Defense TechnologyHunanPeople’s Republic of China
  2. 2.School of Engineering and Advanced TechnologyMassey UniversityAucklandNew Zealand

Personalised recommendations