Advertisement

Particle Filtering for Industrial 6DOF Visual Servoing

  • Aitor Ibarguren
  • José María Martínez-Otzeta
  • Iñaki Maurtua
Article

Abstract

Visual servoing allows the introduction of robotic manipulation in dynamic and uncontrolled environments. This paper presents a position-based visual servoing algorithm using particle filtering. The objective is the grasping of objects using the 6 degrees of freedom of the robot manipulator in non-automated industrial environments using monocular vision. A particle filter has been added to the position-based visual servoing algorithm to deal with the different noise sources of those industrial environments. Experiments performed in the real industrial scenario of ROBOFOOT (http://www.robofoot.eu/) project showed accurate grasping and high level of stability in the visual servoing process.

Keywords

Robotics Visual servoing Particle filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiss, L., Sanderson, A., Neuman, C.: Dynamic sensor-based control of robots with visual feedback. IEEE J. Robot. Automat. 3, 404–417 (1987)CrossRefGoogle Scholar
  2. 2.
    Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE Trans. Robot. Automat. 12, 651–670 (1996)CrossRefGoogle Scholar
  3. 3.
    Doucet, A., De Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, Berlin (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Kotecha, J.H., Djuric, P.M.: Gaussian particle filtering. In: Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, pp. 429–432 (2001)Google Scholar
  5. 5.
    Sung-Hyun Han, H., Seo, W.H., Yoon, K.S., Man-Hyung, L.: Real-time control of an industrial robot using image-based visual servoing. In: Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS ’99, vol. 3, pp. 1762–1767 (1999)Google Scholar
  6. 6.
    Nomura, H., Naito, T.: Integrated visual servoing system to grasp industrial parts moving on conveyer by controlling 6DOF arm. In: 2000 IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 1768–1775 (2000)Google Scholar
  7. 7.
    Lippiello, V., Siciliano, B., Villani, L.: An experimental setup for visual servoing applications on an industrial robotic cell. In: Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1431–1436 (2005)Google Scholar
  8. 8.
    Lippiello, V., Siciliano, B., Villani, L.: Position-based visual servoing in industrial multirobot cells using a hybrid camera configuration. IEEE Trans. Robot. 23(1), 73–86 (2007)CrossRefGoogle Scholar
  9. 9.
    Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)CrossRefGoogle Scholar
  10. 10.
    Klein, G., Murray, D.: Full-3D edge tracking with a particle filter. In: Proc. British Machine Vision Conference (BMVC’06), vol. 3, pp. 1119–1128 (2006)Google Scholar
  11. 11.
    Teuliere, C., Marchand, E., Eck, L.: Using multiple hypothesis in model-based tracking. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4559–4565 (2010)Google Scholar
  12. 12.
    Liu, J., Chen, R., Logvinenko, T.: A theoretical framework for sequential importance sampling and resampling. Technical report, Stanford University, Department of Statistics (2000)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Aitor Ibarguren
    • 1
  • José María Martínez-Otzeta
    • 1
  • Iñaki Maurtua
    • 1
  1. 1.IK4-TeknikerEibarSpain

Personalised recommendations