Local Model and Controller Network Design for a Single-Link Flexible Manipulator

  • S. K. Sharma
  • R. Sutton
  • M. O. Tokhi


This paper describes a new genetic learning approach to the construction of a local model network (LMN) and design of a local controller network (LCN) with application to a single-link flexible manipulator. A highly nonlinear flexible manipulator system is modelled using an LMN comprising Autoregressive–moving-average model with exogenous inputs (ARMAX) type local models (LMs) whereas linear Proportional-integral-derivative (PID) type local controllers (LCs) are used to design an LCN. In addition to allowing the simultaneous optimisation of the number of LMs and LCs, model parameters and interpolation function parameters, the approach provides a flexible framework for targeting transparency and generalisation. Simulation results confirm the excellent nonlinear modelling properties of an LM network and illustrate the potential benefits of the proposed LM control scheme.


Local model network Local controller network Flexible manipulator Genetic algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johansen, T.A., Foss, B.A.: Constructing NARMAX models using ARMAX models. Int. J. Control 58, 1125–1153 (1993)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Johansen, T.A., Foss, B.A.: Semi-empirical modeling of nonlinear dynamic systems through identification of operating regimes and local models. In: Hunt, K.J., Irwin, G.R., Warwick, K. (eds.) Neural Network Engineering in Dynamic Control System, pp. 105–126. Springer-Verlag London Limited (1995)Google Scholar
  3. 3.
    Brown, M.D., Lightbody, G., Irwin, G.W.: Non-linear internal model control using local model networks. IEE Proc. Control Theory Appl. 144(6), 505–514 (1997)CrossRefGoogle Scholar
  4. 4.
    Murray-Smith, R., Johansen, T.A.: Multiple Model Approaches to Modeling and Control. Taylor and Francis, New York (1997)Google Scholar
  5. 5.
    McLoone, S.F., Brown, M.D., Irwin, G.W., Lightbody, G.: A hybrid linear/nonlinear training algorithm for feedforward neural networks. IEEE Trans. Neural Netw. 9(4), 669–684 (1998)CrossRefGoogle Scholar
  6. 6.
    Nelles, O.: Orthogonal basis function for nonlinear system identification with local linear model trees (LOLIMOT). In: Proc. Of 11th IFAC Symposium on System Identification (Invited Session), Japan, vol. 2, pp. 667–672 (1997)Google Scholar
  7. 7.
    Rippin, D.W.T.: Control of batch processes. In: Proceedings of the 3rd IFAC DYCORD + ’89 Symposium, pp. 115–125. Maastrict, Netherlands (1989)Google Scholar
  8. 8.
    Townsend, S., Lightbody, G., Brown, M.D., Irwin, G.W.: Nonlinear dynamic matrix control using local model networks. Trans. Inst. MC 20(1), 47–56 (1998)CrossRefGoogle Scholar
  9. 9.
    Tokhi, M.O., Azad, A.K.M.: Flexible Robot Manipulators—Modelling, Simulation and Control. The Institution of Engineering and Technology, London, UK (2008)CrossRefMATHGoogle Scholar
  10. 10.
    Jie, L., Zhihui, G., Yushu, B., Jingjing, Y.: Modeling and modification of the flexible robot with single controllable local degree of freedom. In: 2012 International Conference on Mechatronics and Automation (ICMA), 5–8 Aug. 2012, pp. 1840–1844 (2012). doi: 10.1109/ICMA.2012.6285101
  11. 11.
    Sharma, S.K., McLoone, S., Irwin, G.W.: Genetic algorithms for local controller network construction. IEE Proc. Control Theory Appl. 152(5), 587–597 (2005)CrossRefGoogle Scholar
  12. 12.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, New York (1996)CrossRefMATHGoogle Scholar
  13. 13.
    Poerwanto, H.: Dynamic simulation and control of flexible manipulator systems. PhD Thesis, Department of Automatic Control and System Engineering, The University of Sheffield, UK (1998)Google Scholar
  14. 14.
    Sharma, S.K.: Soft computing for modelling and control of dynamic systems with application to flexible manipulators. PhD thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, UK (2000)Google Scholar
  15. 15.
    Renato, V., Alessandro, G., Marco, G.: Design and implementation of an ERLS-based 3-D dynamic formulation for flexible-link robots. J. Robot. Comput. Integr. Manuf. 29(2), 273–282. issn = 0736-5845 (2013). doi: 10.1016/j.rcim.2012.07.008
  16. 16.
    Book, W.J.: Recursive lagrangian dynamics of flexible manipulator arms. Int. J. Robot. 3, 87–101 (1984)CrossRefGoogle Scholar
  17. 17.
    Chang, L.W., Hamilton, J.F.: Dynamic robotic manipulators with flexible links. Trans. ASME J. Dyn. Syst. Meas. Control 113(1), 54–59 (1991)CrossRefGoogle Scholar
  18. 18.
    Gamarra-Rosado, V.O., Fernandez, G., Grieco, J.C., Armada, M., Alane, N.: Control of a flexible one-link manipulator. Autom. Cybern. 25(5), 38–47 (1996)Google Scholar
  19. 19.
    Shabana, A.: Flexible multibody dynamics review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Benosman, M., Boyer, F., Vey, G., Primautt, D.: Flexible links manipulators from modelling to control. J. Intell. Robot. Syst. 34(4), 381–414 (2002)CrossRefMATHGoogle Scholar
  21. 21.
    Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. ASME Appl. Mech. Rev. 56(6), 553–613 (2003)CrossRefGoogle Scholar
  22. 22.
    Dwivedy, S., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41, 749–777 (2006)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Benosman, M., Vey, G.: Control of flexible manipulators a survey. Robotica 22(22), 533–545 (2004)CrossRefGoogle Scholar
  24. 24.
    Caracciolo, R., Richiedei, D., Trevisani, A.: Design and experimental validation of piecewise-linear state observers for flexible link mechanisms. Meccanica 41(41), 623–637 (2006)CrossRefMATHGoogle Scholar
  25. 25.
    Caracciolo, R., Richiedei, D., Trevisani, A.: Experimental validation of a model-based robust controller for multi-body mechanisms with flexible links. Multibody Syst. Dyn. 20(2), 129–145 (2008)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Boscariol, P., Gasparetto, A., Zanotto, V.: Active position and vibration control of a flexible links mechanism using model-based predictive control. ASME J. Dyn. Syst. Meas. Control 132, 1–4 (2010)CrossRefGoogle Scholar
  27. 27.
    Dietz, S., Wallrapp, O., Wiedemann, S.: Nodal vs. modal representation in flexible multibody system dynamics. In: Proceedings of Multibody Dynamics 2003, IDMEC/IST 2003. Lisbon, Portugal (2003)Google Scholar
  28. 28.
    Martins, J., Mohamed, Z., Tokhi, M., da Costa, J.S., Botto, M.: Approaches for dynamic modelling of flexible manipulator systems. In: Proceedings of the IEEE Conference on Control Theory and Applications, vol. 150 (2003)Google Scholar
  29. 29.
    Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs, NJ (1999)Google Scholar
  30. 30.
    Alam, M.S., Tokhi, M.O.: Designing feedforward command shapers with multi-objective genetic optimisation for vibration control of a single-link flexible manipulator. Eng. Appl. Artif. Intell. 21(2), 229–246 (2008)CrossRefGoogle Scholar
  31. 31.
    Alam, M.S., Tokhi, M.O.: Hybrid fuzzy logic control with genetic optimisation of a single-link flexible manipulator. Eng. Appl. Artif. Intell. 21(6), 858–873 (2008)CrossRefGoogle Scholar
  32. 32.
    Alam, M.S., Tokhi, M.O.: Selecting and designing command shapers for vibration control of flexible manipulators: a multi-objective optimization approach. Int. J. Acoust. Vib. 14(4), 179–187 (2009)Google Scholar
  33. 33.
    Cannon, R.H., Schmitz, E.: Initial experiments on the end-point control of a flexible one link robot. Int. J. Robot. Res. 3(3), 62–75 (1984)CrossRefGoogle Scholar
  34. 34.
    Khorrami, F., Jain, S.: Non-linear control with end-point acceleration feedback for a two link flexible manipulator: experimental results. J. Robot. Syst. 10, 505–530 (1993)CrossRefGoogle Scholar
  35. 35.
    Md Zain, M.Z., Tokhi, M.O., Mohamed, Z.: Hybrid learning control schemes with input-shaping of a flexible manipulator system. Mechatronics 16, 209–219 (2006)CrossRefGoogle Scholar
  36. 36.
    Mohamed, Z., Tokhi, M.O.: Hybrid control schemes for input tracking and vibration suppression of a flexible manipulator. Proc. IMechE-I J. Syst. Control Eng. 217(I1), 23–34 (2003)CrossRefGoogle Scholar
  37. 37.
    Mohamed, Z., Tokhi, M.O.: Command shaping techniques for vibration control of a flexible robot manipulator. Mechatronics 14, 69–90 (2004)CrossRefGoogle Scholar
  38. 38.
    Mohamed, Z., Martins, J., Tokhi, M.O., Sa Da Costa, J., Botto, M.A.: Vibration control of a very flexible manipulator system. Control Eng. Pract. 13(3), 267–277 (2005)CrossRefGoogle Scholar
  39. 39.
    Mohamed, Z., Chee, A.K., Mohd Hashim, A.W.I., Tokhi, M.O., Shamsudin, H.M.A., Mamat, R.: Techniques for vibration control of a flexible manipulator. Robotica 24(4), 499–511 (2006)CrossRefGoogle Scholar
  40. 40.
    Siciliano, B., Book, W.J.: A Singular perturbation approach to control of light-weight flexible manipulators. Int. J. Robot. Res. 7(4), 79–90 (1988)CrossRefGoogle Scholar
  41. 41.
    Siddique, M.N.H., Tokhi, M.O.: GA-based neural fuzzy control of flexible-link manipulators. Eng. Lett. 13(2), 148–157 (2006)Google Scholar
  42. 42.
    Tokhi, M.O., Md Zain, M.Z.: Hybrid learning control schemes with acceleration feedback of a flexible manipulator system. Proc. IMechE-I J. Syst. Control Eng. 220(I4), 257–267(2006)CrossRefGoogle Scholar
  43. 43.
    Tzes, A., Yurkovich, S.: An adaptive input shaping control scheme for vibration suppression in slewing flexible structures. IEEE Trans. Control Syst. Technol. 1, 114–121 (1993)CrossRefGoogle Scholar
  44. 44.
    Lin, L.C.: State feedback H ∞  control of manipulators with flexible joints and links. In: IEEE International Conference on Robotics and Automation, pp. 218–223. Sacramento, California (1991)Google Scholar
  45. 45.
    Lucibello, P.: Nonlinear regulation with internal stability of a two link flexible robot arm. In: IEEE Conference on Decision and Control, pp. 1645–1650. Florida, USA (1989)Google Scholar
  46. 46.
    Khorrami, F., Ozguner, U.: Perturbation methods in control of flexible link manipulators. In: IEEE Conference on Robotics and Automation, pp. 310–315. Philadelphia, PA (1988)Google Scholar
  47. 47.
    Nathan, P.J., Singh, S.N.: Sliding mode control and elastic mode stabilization of a robotic arm with flexible link. ASME Trans. Dyn. Syst. Meas. Control 113, 669–676 (1991)CrossRefMATHGoogle Scholar
  48. 48.
    Yurkovich, S., Garcia-Benitez, E., Watkins, J.: Feedback linearization with acceleration feedback for a two-link flexible manipulator. In: Proceedings of American Control Conference, vol. 2, pp. 1360–1365. Evanston, IL (1991)Google Scholar
  49. 49.
    Siciliano, B., Yuan, B.S., Book, W.J.: Model reference adaptive control of a one link flexible arm. In: Proc. 25th IEEE Conference on Decision and Control, pp. 91–95. Athens, Greece (1986)Google Scholar
  50. 50.
    Feliu, V., Rattan, K.S., Brown, H.B.: Adaptive control of a single-link flexible manipulator. IEEE Control Syst. Mag. 10(2), 29–33 (1990)CrossRefGoogle Scholar
  51. 51.
    Menq, C.H., Chen, J.S.: Dynamic modelling and payload-adaptive control of a flexible manipulator. In: IEEE Conference on Robotics and Automation, pp. 488–493. Philadelphia, PA (1988)Google Scholar
  52. 52.
    Cetinkunt, S., Wu, S.: Tip position control of a flexible one arm robot with predictive adaptive output feedback implemented with lattice filter parameter identifier. Comput. Struct. 36(3), 429–441 (1990)CrossRefMATHGoogle Scholar
  53. 53.
    Yang, T.C., Yang, J.C., Kudva, P.: Adaptive control of a single-link flexible manipulator with unknown load. Int. Electr. Eng. Proc. 138(2), 153–159 (1991)Google Scholar
  54. 54.
    Nemir, D.C., Koivo, A.J., Kashyap, R.L.: Pseudolinks and the self-tuning control of a non rigid link mechanism. IEEE Trans. Syst. Man Cybern. 18(1), 40–48 (1988)CrossRefGoogle Scholar
  55. 55.
    Lucibello, P., Bellezza, F.: Nonlinear adaptive control of a two link flexible robot arm. In: IEEE Conference on Decision and Control, pp. 2545–2550 (1990)Google Scholar
  56. 56.
    Yang, Y., Huang, K.: Adaptive lattice estimation and control of a manipulator with one flexible forearm. Int. Electr. Eng. Proc. 139(3), 237–244 (1992)MATHGoogle Scholar
  57. 57.
    Koivo, A.J., Lee, K.S.: Self-tuning control of a two-link manipulator with a flexible forearm. Int. J. Robot. Res. 11(4), 383–395 (1992)CrossRefGoogle Scholar
  58. 58.
    Zhongyi, C., Jing C.: Vibration control of maneuvering spacecraft with flexible manipulator using adaptive disturbance rejection filter and command shaping technology. In: 2012 Sixth International Conference on Internet Computing for Science and Engineering (ICICSE), 21–23 Apr. 2012, pp. 97–101 (2012). doi: 10.1109/ICICSE.2012.13
  59. 59.
    Tokhi, M.O., Kourtis, S., Poerwanto, H., Azad, A.K.M.: Control of flexible manipulator systems using filtered command inputs. Mach. Vib. 4, 68–89 (1995)Google Scholar
  60. 60.
    Tokhi, M.O, Azad, A.K.M.: Control of flexible manipulator systems. Proc. IMechE-I J. Syst. Control Eng. 210(I2), 113–130 (1996)CrossRefGoogle Scholar
  61. 61.
    Carmelo di, C., Arcangelo, M.: Exact modeling for control of flexible manipulators. J. Vib. Control 18(10), 1526–1551 (2012)CrossRefMathSciNetGoogle Scholar
  62. 62.
    Goldberg, D.: Genetic Algorithm in Search, Optimisation and Machine Learning. Addison-Wesley, Massacheusetts (1989)Google Scholar
  63. 63.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge, Masssachusetts (1992)Google Scholar
  64. 64.
    Ogata, K.: Modern Control Engineering, 4th edn. Prentice-Hall Inc (2002)Google Scholar
  65. 65.
    Tan, K.K., Huang, S., Ferdous, R.: Robust self-tuning PID controller for nonlinear systems. J. Process Control 12(7), 753–761 (2002)CrossRefGoogle Scholar
  66. 66.
    Chen, G., Ying, H.: BIBO stability of nonlinear fuzzy PI control systems. J. Intell. Fuzzy Syst. 5, 245–256 (1997)Google Scholar
  67. 67.
    Malki, H., Li, H., Chen, G.: New design and stability analysis of a fuzzy proportional-derivative control system. IEEE Trans. Fuzzy Syst. 2, 245–254 (1995)CrossRefGoogle Scholar
  68. 68.
    Misir, D., Malki, H., Chen, G.: Design and analysis of a fuzzy proportional-integral-derivative controller. Int. J. Fuzzy Sets Syst. 79, 297–314 (1996)CrossRefMATHMathSciNetGoogle Scholar
  69. 69.
    Sooraksa, P., Chen, G.: Fuzzy (PID)2 control for flexible robot arms. In: Proc. IEEE Int. Conf. on Control Appl., 15–18 Sept., pp. 536–541. Deerborn, MI (1996)Google Scholar
  70. 70.
    Ortega, R., Loria, A., Kelly, R.: A semiglobally stable output feedback PID regulator for robot manipulators. IEEE Trans. Autom. Control 40(8), 1432–1436 (1995)CrossRefMATHMathSciNetGoogle Scholar
  71. 71.
    Alvarez, J., Cervantes, I., Kelly, R.: PID regulation of robot manipulators: stability and performance. Syst. Control Lett. 41(2), 73–83 (2000)CrossRefMATHGoogle Scholar
  72. 72.
    Arimoto, S.: Control Theory of Non-Linear Mechanical Systems: a Passivity-Based and Circuit-Theoretic Approach. Oxford Univ. Press, London, UK (1996)Google Scholar
  73. 73.
    Meza, J.L., Santibañez, V., Campa, R.: An estimate of the domain of attraction for the PID regulator of manipulators. Int. J. Robot. Autom. 22(3), 187–195 (2007)Google Scholar
  74. 74.
    Kelly, R., Haber, R., Haber, R.E., Reyes, F.: Lyapunov stable control of robot manipulators: a fuzzy self-tuning procedure. Intell. Autom. Soft Comput. 5(4), 313–326 (1999)CrossRefGoogle Scholar
  75. 75.
    Meza, J.L., Santibanez, V., Soto, R., Llama, M.A.: Fuzzy self-tuning PID semiglobal regulator for robot manipulators. IEEE Trans. Ind. Electron. 59(6), 2709–2717 (2012). doi: 10.1109/TIE.2011.2168789 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Marine Science and EngineeringPlymouth UniversityPlymouthUK
  2. 2.Department of Automatic Control and Systems EngineeringThe University of SheffieldSheffieldUK

Personalised recommendations