Journal of Intelligent & Robotic Systems

, Volume 72, Issue 1, pp 105–122 | Cite as

Adaptive Nonlinear Stabilization Control for a Quadrotor UAV: Theory, Simulation and Experimentation

  • Mostafa Mohammadi
  • Alireza Mohammad Shahri


In this paper an adaptive control scheme along with its simulation, and its implementation on a quadrotor are presented. Parametric and non- parametric uncertainties in the quadrotor model make it difficult to design a controller that works properly in various conditions during flight time. Decentralized adaptive controller, which is synthesized based on improved Lyapunov-based Model Reference Adaptive Control (MRAC) technique, is suggested to solve the problem. The proposed control scheme does not need knowing the value of any physical parameter for generating appropriate control signals, and retuning the controller is not required for different payloads. An accurate simulation that includes empirical dynamic model of battery, sensors, and actuators is performed to validate the stability of the closed loop system. The simulation study simplifies implementation of the controller on our real quadrotor. A practical algorithm is proposed to alleviate and accelerate the tuning of controller parameters. The controller is implemented on the quadrotor to stabilize its attitude and altitude. Simulation and experimental results demonstrate the efficiency and robustness of the proposed controller.


Adaptive control Stabilization Decentralized control Quadrotor UAV 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10846_2013_9813_MOESM1_ESM.mpg (2.5 mb)
(MPG 2.52 MB)
10846_2013_9813_MOESM2_ESM.mp4 (4.1 mb)
(MP4 4.09 MB)


  1. 1.
    Das, A., Lewis, F., Subbaro, K.: Backstepping approach for controlling a quadrotor using lagrange form dynamics. J. Intell. Robot. Syst. 56(1–2), 127–151 (2009). doi: 10.1007/s10846-009-9331-0 CrossRefMATHGoogle Scholar
  2. 2.
    Orsag, M., Poropat, M. Bogdan, S.: Hybrid fly-by-wire quadrotor controller. Automatika 51(1), 19–32 (2010)Google Scholar
  3. 3.
    Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004). doi: 10.1109/TCST.2004.825052 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Madani, T., Benallegue, A.: Adaptive control via backstepping technique and neural networks of a quadrotor helicopter. In: Proceedings of the 17th World Congress the International Federation of Automatic Control, pp. 6513–6518. Seoul, Korea (2008)Google Scholar
  5. 5.
    Huang, M., Xian, B., Diao, C., Yang, K., Feng, Y.: Adaptive tracking control of underactuated quadrotor unmanned aerial vehicles via backstepping. In: Proceedings of American Control Conference, pp. 2076–2081. Marriott Waterfront, Baltimore, MD, USA (2010)Google Scholar
  6. 6.
    Michini, B., How, J.: L1 adaptive control for indoor autonomous vehicles: design process and flight testing. In: Proceeding of AIAA Guidance, Navigation, and Control Conference, pp. 5754–5768. Chicago, Illinois (2009)Google Scholar
  7. 7.
    Dierks, T., jagannathan, S.: Output feedback control of a quadrotor uav using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010)CrossRefGoogle Scholar
  8. 8.
    Nicol, C., Macnab, C.J.B., Ramirez-Serrano, A.: Robust adaptive control of a quadrotor helicopter. J. Mechatronics 21(6), 927–938 (2011)CrossRefGoogle Scholar
  9. 9.
    Zemalache, K., Maaref, H.: Controlling a drone: Comparison between a based model method and a fuzzy inference system. Appl. Soft Comput. 9, 553–562 (2009). doi: 10.1016/j.asoc.2008.08.007 CrossRefGoogle Scholar
  10. 10.
    Raffo, G., Ortega, M., Rubio, F.: An integral predictive/nonlinear H ∞  control structure for a quadrotor helicopter. Automatica 46, 29–39 (2010). doi: 10.1016/j.automatica.2009.10.018 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Mhammed, G., Hicham, M.: A high gain observer and sliding mode controller for an autonomous quadrotor helicopter. Int. J. Intell. Control Syst. 14(3), 204–212 (2009)Google Scholar
  12. 12.
    Das, A., Lewis, F., Subbaro, K.: Dynamic inversion with zero-dynamics stabilisation for Quadrotor control. IET Control Theory Appl. 3, 303–314 (2009). doi: 10.1049/iet-cta:20080002 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lee, D., Kim, H., Sastry, S.: Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control Autom. 7(3),419–428 (2009). doi: 10.1007/s12555-009-0311-8 CrossRefGoogle Scholar
  14. 14.
    Benallegue, A., Mokhtari, A., Fridman, L.: High-order sliding-mode observer for a quadrotor UAV. Int. J. Robust Nonlinear Control 18(4–5), 427–440 (2008). doi: 10.1002/rnc.1225 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhang, R., Quan, Q., Cai, K.Y.: Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl. 5(9), 1140–1146 (2011). doi: 10.1049/iet-cta.2010.0273 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Efe, M.Ö.: Neural network assisted computationally simple PID control of a quadrotor UAV. IEEE Trans. Ind. Informat. 7(2), 354–361 (2011). doi: 10.1109/TII.2011.2123906 CrossRefGoogle Scholar
  17. 17.
    Cano, J.M., Lo’ pez-Mart’nez, M., Rubio, F.R.: Asynchronous networked control of linear systems via L2-gain-based transformations: analysis and synthesis. IET Control Theory Appl. 5(4), 647–654 (2011). doi: 10.1049/iet-cta.2010.0205 MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fahimi, F, Saffarian, M.: The control point concept for nonlinear trajectory-tracking control of autonomous helicopters with fly-bar. Int. J. Control 84(2), 242–252 (2011). doi: 10.1080/00207179.2010.549842 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Guenard, N., Hamel, T., Mahony, R.: A practical visual servo control for an unmanned aerial vehicle. IEEE Trans. Robot. 24(2), 331–340 (2008). doi: 10.1109/TRO.2008.916666 CrossRefGoogle Scholar
  20. 20.
    Mahony, R., Corke, P., Hamel, T.: Dynamic image-based visual servo control using centroid and optic flow features. J. Dyn. Syst. Meas. Control. 130, 35–46 (2008). doi: 10.1115/1.2807085 CrossRefGoogle Scholar
  21. 21.
    Bourquardez, O., Mahony, R., Guenard, N., Chaumette, F., Hamel, T., Eck, L.: Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE Trans. Robot. 25(3), 743–749 (2009). doi: 10.1109/TRO.2008.2011419 CrossRefGoogle Scholar
  22. 22.
    Garca Carrillo, L.R., Rondon, E., Sanchez, A., Dzul, A., Lozano, R.: Stabilization and trajectory tracking of a quadrotor using vision. J. Intell. Robot. Syst. 61(1–4), 103–118 (2011). doi: 10.1007/s10846-010-9472-1 CrossRefGoogle Scholar
  23. 23.
    Eberli, D., Scaramuzza, D., Weiss, S., Siegwart, R.: Vision based position control for mavs using one single circular landmark. J. Intell. Robot. Syst. 61(1–4), 495–512 (2011). doi: 10.1007/s10846-010-9494-8 CrossRefGoogle Scholar
  24. 24.
    Tarhan, M., Altug, E.: EKF based attitude estimation and stabilizationof a quadrotor uav using vanishing points in catadioptric images. J. Intell. Robot. Syst. 62(3–4), 587–607 (2011). doi: 10.1007/s10846-010-9459-y CrossRefGoogle Scholar
  25. 25.
    Seraji, H.: Decentralized adaptive control of manipulators: theory, simulation, and experimentation. IEEE Trans. Robot. Autom. 5(2), 183–201 (1989)CrossRefGoogle Scholar
  26. 26.
    Bouabdallah, S.: Design and control of quadrotor with application to autonomous flying. Unpublished Doctoral Dissertation, pp. 15–25. EPFL University, Lausanne (2007)Google Scholar
  27. 27.
    Asada, H., Slotine, J.: Robot Analysis and Control. Wiley, New York (1986)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Mechatronic & Robotic Research Laboratory, Electronic Research Center, Electrical Engineering DepartmentIran University of Science and TechnologyNarmakIran

Personalised recommendations