Skip to main content

Advertisement

Log in

Adaptive Nonlinear Stabilization Control for a Quadrotor UAV: Theory, Simulation and Experimentation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper an adaptive control scheme along with its simulation, and its implementation on a quadrotor are presented. Parametric and non- parametric uncertainties in the quadrotor model make it difficult to design a controller that works properly in various conditions during flight time. Decentralized adaptive controller, which is synthesized based on improved Lyapunov-based Model Reference Adaptive Control (MRAC) technique, is suggested to solve the problem. The proposed control scheme does not need knowing the value of any physical parameter for generating appropriate control signals, and retuning the controller is not required for different payloads. An accurate simulation that includes empirical dynamic model of battery, sensors, and actuators is performed to validate the stability of the closed loop system. The simulation study simplifies implementation of the controller on our real quadrotor. A practical algorithm is proposed to alleviate and accelerate the tuning of controller parameters. The controller is implemented on the quadrotor to stabilize its attitude and altitude. Simulation and experimental results demonstrate the efficiency and robustness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Das, A., Lewis, F., Subbaro, K.: Backstepping approach for controlling a quadrotor using lagrange form dynamics. J. Intell. Robot. Syst. 56(1–2), 127–151 (2009). doi:10.1007/s10846-009-9331-0

    Article  MATH  Google Scholar 

  2. Orsag, M., Poropat, M. Bogdan, S.: Hybrid fly-by-wire quadrotor controller. Automatika 51(1), 19–32 (2010)

    Google Scholar 

  3. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004). doi:10.1109/TCST.2004.825052

    Article  MathSciNet  Google Scholar 

  4. Madani, T., Benallegue, A.: Adaptive control via backstepping technique and neural networks of a quadrotor helicopter. In: Proceedings of the 17th World Congress the International Federation of Automatic Control, pp. 6513–6518. Seoul, Korea (2008)

  5. Huang, M., Xian, B., Diao, C., Yang, K., Feng, Y.: Adaptive tracking control of underactuated quadrotor unmanned aerial vehicles via backstepping. In: Proceedings of American Control Conference, pp. 2076–2081. Marriott Waterfront, Baltimore, MD, USA (2010)

    Google Scholar 

  6. Michini, B., How, J.: L1 adaptive control for indoor autonomous vehicles: design process and flight testing. In: Proceeding of AIAA Guidance, Navigation, and Control Conference, pp. 5754–5768. Chicago, Illinois (2009)

  7. Dierks, T., jagannathan, S.: Output feedback control of a quadrotor uav using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010)

    Article  Google Scholar 

  8. Nicol, C., Macnab, C.J.B., Ramirez-Serrano, A.: Robust adaptive control of a quadrotor helicopter. J. Mechatronics 21(6), 927–938 (2011)

    Article  Google Scholar 

  9. Zemalache, K., Maaref, H.: Controlling a drone: Comparison between a based model method and a fuzzy inference system. Appl. Soft Comput. 9, 553–562 (2009). doi:10.1016/j.asoc.2008.08.007

    Article  Google Scholar 

  10. Raffo, G., Ortega, M., Rubio, F.: An integral predictive/nonlinear H ∞  control structure for a quadrotor helicopter. Automatica 46, 29–39 (2010). doi:10.1016/j.automatica.2009.10.018

    Article  MathSciNet  MATH  Google Scholar 

  11. Mhammed, G., Hicham, M.: A high gain observer and sliding mode controller for an autonomous quadrotor helicopter. Int. J. Intell. Control Syst. 14(3), 204–212 (2009)

    Google Scholar 

  12. Das, A., Lewis, F., Subbaro, K.: Dynamic inversion with zero-dynamics stabilisation for Quadrotor control. IET Control Theory Appl. 3, 303–314 (2009). doi:10.1049/iet-cta:20080002

    Article  MathSciNet  Google Scholar 

  13. Lee, D., Kim, H., Sastry, S.: Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control Autom. 7(3),419–428 (2009). doi:10.1007/s12555-009-0311-8

    Article  Google Scholar 

  14. Benallegue, A., Mokhtari, A., Fridman, L.: High-order sliding-mode observer for a quadrotor UAV. Int. J. Robust Nonlinear Control 18(4–5), 427–440 (2008). doi:10.1002/rnc.1225

    Article  MathSciNet  Google Scholar 

  15. Zhang, R., Quan, Q., Cai, K.Y.: Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl. 5(9), 1140–1146 (2011). doi:10.1049/iet-cta.2010.0273

    Article  MathSciNet  Google Scholar 

  16. Efe, M.Ö.: Neural network assisted computationally simple PID control of a quadrotor UAV. IEEE Trans. Ind. Informat. 7(2), 354–361 (2011). doi:10.1109/TII.2011.2123906

    Article  Google Scholar 

  17. Cano, J.M., Lo’ pez-Mart’nez, M., Rubio, F.R.: Asynchronous networked control of linear systems via L2-gain-based transformations: analysis and synthesis. IET Control Theory Appl. 5(4), 647–654 (2011). doi:10.1049/iet-cta.2010.0205

    Article  MathSciNet  Google Scholar 

  18. Fahimi, F, Saffarian, M.: The control point concept for nonlinear trajectory-tracking control of autonomous helicopters with fly-bar. Int. J. Control 84(2), 242–252 (2011). doi:10.1080/00207179.2010.549842

    Article  MathSciNet  MATH  Google Scholar 

  19. Guenard, N., Hamel, T., Mahony, R.: A practical visual servo control for an unmanned aerial vehicle. IEEE Trans. Robot. 24(2), 331–340 (2008). doi:10.1109/TRO.2008.916666

    Article  Google Scholar 

  20. Mahony, R., Corke, P., Hamel, T.: Dynamic image-based visual servo control using centroid and optic flow features. J. Dyn. Syst. Meas. Control. 130, 35–46 (2008). doi:10.1115/1.2807085

    Article  Google Scholar 

  21. Bourquardez, O., Mahony, R., Guenard, N., Chaumette, F., Hamel, T., Eck, L.: Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE Trans. Robot. 25(3), 743–749 (2009). doi:10.1109/TRO.2008.2011419

    Article  Google Scholar 

  22. Garca Carrillo, L.R., Rondon, E., Sanchez, A., Dzul, A., Lozano, R.: Stabilization and trajectory tracking of a quadrotor using vision. J. Intell. Robot. Syst. 61(1–4), 103–118 (2011). doi:10.1007/s10846-010-9472-1

    Article  Google Scholar 

  23. Eberli, D., Scaramuzza, D., Weiss, S., Siegwart, R.: Vision based position control for mavs using one single circular landmark. J. Intell. Robot. Syst. 61(1–4), 495–512 (2011). doi:10.1007/s10846-010-9494-8

    Article  Google Scholar 

  24. Tarhan, M., Altug, E.: EKF based attitude estimation and stabilizationof a quadrotor uav using vanishing points in catadioptric images. J. Intell. Robot. Syst. 62(3–4), 587–607 (2011). doi:10.1007/s10846-010-9459-y

    Article  Google Scholar 

  25. Seraji, H.: Decentralized adaptive control of manipulators: theory, simulation, and experimentation. IEEE Trans. Robot. Autom. 5(2), 183–201 (1989)

    Article  Google Scholar 

  26. Bouabdallah, S.: Design and control of quadrotor with application to autonomous flying. Unpublished Doctoral Dissertation, pp. 15–25. EPFL University, Lausanne (2007)

  27. Asada, H., Slotine, J.: Robot Analysis and Control. Wiley, New York (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Mohammadi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 2.52 MB)

(MP4 4.09 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, M., Shahri, A.M. Adaptive Nonlinear Stabilization Control for a Quadrotor UAV: Theory, Simulation and Experimentation. J Intell Robot Syst 72, 105–122 (2013). https://doi.org/10.1007/s10846-013-9813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9813-y

Keywords

Navigation