Advertisement

Journal of Intelligent & Robotic Systems

, Volume 69, Issue 1–4, pp 119–130 | Cite as

A Ground Control Station for a Multi-UAV Surveillance System

Design and Validation in Field Experiments
  • Daniel Perez
  • Ivan Maza
  • Fernando Caballero
  • David Scarlatti
  • Enrique Casado
  • Anibal Ollero
Article

Abstract

This paper presents the ground control station developed for a platform composed by multiple unmanned aerial vehicles for surveillance missions. The software application is fully based on open source libraries and it has been designed as a robust and decentralized system. It allows the operator to dynamically allocate different tasks to the UAVs and to show their operational information in a 3D realistic environment in real time. The ground control station has been designed to assist the operator in the challenging task of managing a system with multiple UAVs, trying to reduce his workload. The multi-UAV surveillance system has been demonstrated in field experiments using two quadrotors equipped with visual cameras.

Keywords

Multi-UAS platforms Ground control station Decentralized architectures Graphical interfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maza, I., Caballero, F., Capitan, J., de Dios, J.M., Ollero, A.: A distributed architecture for a robotic platform with aerial sensor transportation and self-deployment capabilities. J. Field Robot. 28(3), 303–328 (2011). doi: 10.1002/rob.20383 CrossRefGoogle Scholar
  2. 2.
    Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 28(6), 914–931 (2011). doi: 10.1002/rob.20401 CrossRefGoogle Scholar
  3. 3.
    Jovanovic, M., Starcevic, D.: Software architecture for ground control station for unmanned aerial vehicle. In: Tenth International Conference on Computer Modeling and Simulation, 2008. UKSIM 2008, pp. 284–288 (2008)Google Scholar
  4. 4.
    Dong, M., Chen, B., Cai, G., Peng, K.: Development of a real-time onboard and ground station software system for a uav helicopter. JACIC 4(8), 933–955 (2007)CrossRefGoogle Scholar
  5. 5.
    QGroundControl: Open source MAV ground control station. http://qgroundcontrol.org (2010). Accessed 15 May 2012
  6. 6.
    Lemon, O., Bracy, A., Gruenstein, A., Peters, S.: The WITAS multi-modal dialogue system I. In: Proceedings of the 7th European Conference on Speech Communication and Technology (EUROSPEECH), pp. 1559–1562, Aalborg, Denmark (2001)Google Scholar
  7. 7.
    Ollero, A., Maza, I. (eds): Multiple Heterogeneous Unmanned Aereal Vehicles. ser. Springer Tracts on Advanced Robotics. ch. Teleoperation Tools, pp. 189–206. Springer, New York (2007)Google Scholar
  8. 8.
    Sharma, R., Pavlovic, V.I., Huang, T.S.: Toward multimodal human-computer interface. Proc. I.E.E.E. 86(5), 853–869 (1998) Google Scholar
  9. 9.
    McCarley, J.S., Wickens, C.D.: Human Factors Implications of UAVs in the National Airspace. Institute of Aviation, Aviation Human Factors Division, University of Illinois at Urbana-Champaign, AHFD-05-5/FAA-05-1. Tech. Rep. (2005)Google Scholar
  10. 10.
    Maza, I., Caballero, F., Molina, R., Pena, N., Ollero, A.: Multimodal interface technologies for UAV ground control stations. A comparative analysis. J. Intell. Robot. Syst. 57(1–4), 371–391 (2010). doi: 10.1007/s10846-009-9351-9 MATHCrossRefGoogle Scholar
  11. 11.
    Boeing: X-45 Unmanned aerial combat system. http://www.boeing.com/history/boeing/x45_jucas.html (2012). Accessed 15 May 2012
  12. 12.
    Boeing: Ground control station for multiple X-45 Unmanned Aerial Combat Systems. http://www.youtubewatch?v=ilyUNkjKlPM.com/ (2012). Accessed 15 May 2012
  13. 13.
    The Paparazzi Project: Free and open-source hardware and software autopilot system. http://paparazzi.enac.fr (2012). Accessed 15 May 2012
  14. 14.
    Brisset, P., Hattenberger, G.: Multi-UAV control with the paparazzi system. In: Proceedings of the First Conference on Humans Operating Unmanned Systems (HUMOUS’08). Brest, France, 3–4 September 2008Google Scholar
  15. 15.
    N. Corporation: Qt reference documentation. http://doc.qt.nokia.com/4.6 (2012). Accessed 4 Mar 2012
  16. 16.
    Blanchette, J., Summerfield, M.: C+ + GUI Programming with Qt 4. Prentice Hall, Englewood Cliffs, NJ (2006)Google Scholar
  17. 17.
    OpenCV: Open source computer vision. http://opencv.willowgarage.com (2012). Accessed 15 May 2012
  18. 18.
    The Marble Project. KDE Educational Project (2005–2011). Available Online: http://edu.kde.org/marble (2012). Accessed 4 Mar 2012
  19. 19.
    Open Scene Graph. Open source 3d graphics toolkit (2005–2011). Available Online: http://www.openscenegraph.org (2012). Accessed 4 Mar 2012
  20. 20.
    OSG Earth. Terrain rendering toolkit. Pelican Mapping (2005–2011). Available Online: http://osgearth.org/ (2012). Accessed 4 Mar 2012
  21. 21.
    Metta, G., Fitzpatrick, P., Natale, L.: Yarp: yet another robot platform. Int. J. Adv. Robot. Syst. 3(1), 043–048 (2006)Google Scholar
  22. 22.
    The Open Street Map Project (2005–2011). Available Online: http://www.openstreetmap.org (2012). Accessed 15 May 2012
  23. 23.
    COLLADA - Digital Asset and FX Exchange Schema. Available Online: https://collada.org (2012). Accessed 15 May 2012
  24. 24.
    Ascending Technologies (2011). Available Online: www.asctec.de (2012). Accessed 4 Mar 2012

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Daniel Perez
    • 1
  • Ivan Maza
    • 1
  • Fernando Caballero
    • 1
  • David Scarlatti
    • 2
  • Enrique Casado
    • 2
  • Anibal Ollero
    • 1
    • 3
  1. 1.Grupo de Robotica, Vision y ControlUniversidad de SevillaSevilleSpain
  2. 2.Boeing Research & Technology EuropeMadridSpain
  3. 3.Center for Advanced Aerospace Technology (CATEC)Parque Tecnológico y Aeronáutico de AndalucíaLa RinconadaSpain

Personalised recommendations