Advertisement

Journal of Intelligent & Robotic Systems

, Volume 69, Issue 1–4, pp 227–240 | Cite as

Modeling and Control of MM-UAV: Mobile Manipulating Unmanned Aerial Vehicle

  • Matko Orsag
  • Christopher Korpela
  • Paul Oh
Article

Abstract

Compared to autonomous ground vehicles, UAVs (unmanned aerial vehicles) have significant mobility advantages and the potential to operate in otherwise unreachable locations. Micro UAVs still suffer from one major drawback: they do not have the necessary payload capabilities to support high performance arms. This paper, however, investigates the key challenges in controlling a mobile manipulating UAV using a commercially available aircraft and a light-weight prototype 3-arm manipulator. Because of the overall instability of rotorcraft, we use a motion capture system to build an efficient autopilot. Our results indicate that we can accurately model and control our prototype system given significant disturbances when both moving the manipulators and interacting with the ground.

Keywords

UAV Mobile manipulation Dexterous manipulation 

References

  1. 1.
    Bernard, M., Kondak, K.: Generic slung load transportation system using small size helicopters. In: Proc. IEEE Int. Conf. Robotics and Automation ICRA ’09, pp. 3258–3264 (2009)Google Scholar
  2. 2.
    Kuntz, N.R., Oh, P.Y.: Towards autonomous cargo deployment and retrieval by an unmanned aerial vehicle using visual servoing. ASME Conf. Proc. 2008(43260), 841–849 (2008)Google Scholar
  3. 3.
    Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V.: Design, modeling, estimation and control for aerial grasping and manipulation. In: Proc. IEEE/RSJ Int Intelligent Robots and Systems (IROS) Conf, pp. 2668–2673 (2011)Google Scholar
  4. 4.
    Pounds, P.E.I., Bersak, D.R., Dollar, A.M.: Grasping from the air: hovering capture and load stability. In: Proc. IEEE Int Robotics and Automation (ICRA) Conf, pp. 2491–2498 (2011)Google Scholar
  5. 5.
    Korpela, C.M., Danko, T.W., Oh, P.Y.: MM-UAV: mobile manipulating unmanned aerial vehicle. J. Intell. Robot. Syst. 65(1–4), 93–101 (2012)CrossRefGoogle Scholar
  6. 6.
    Korpela, C., Orsag, M., Danko, T., Kobe, B., McNeil, C., Pisch, R., Oh, P.: Flight satbility in aerial redundant manipulators. In: Proc. IEEE Int Robotics and Automation (ICRA) Conf. (2012)Google Scholar
  7. 7.
    Korpela, C.M., Danko, T.W., Oh, P.Y.: Designing a system for mobile manipulation from an unmanned aerial vehicle. In: Proc. IEEE Conf. Technologies for Practical Robot Applications (TePRA), pp. 109–114 (2011)Google Scholar
  8. 8.
    Aghili, F.: Optimal control of a space manipulator for detumbling of a target satellite. In: Proc. IEEE Int. Conf. Robotics and Automation ICRA ’09, pp. 3019–3024 (2009)Google Scholar
  9. 9.
    Dimitrov, D.N., Yoshida, K.: Momentum distribution in a space manipulator for facilitating the post-impact control. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS 2004), vol. 4, pp. 3345–3350 (2004)Google Scholar
  10. 10.
    Ishitsuka, M., Ishii, K.: Modularity development and control of an underwater manipulator for auv. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems IROS 2007, pp. 3648–3653 (2007)Google Scholar
  11. 11.
    Nenchev, D.N., Yoshida, K., Vichitkulsawat, P., Uchiyama, M.: Reaction null-space control of flexible structure mounted manipulator systems. IEEE Trans. Robot. Autom. 15(6), 1011–1023 (1999)CrossRefGoogle Scholar
  12. 12.
    Hoffmann, G.M., Huang, H., Wasl, S.L., Tomlin, E.C.J.: Quadrotor helicopter flight dynamics and control: theory and experiment. In: Proc. of the AIAA Guidance, Navigation, and Control Conference (2007)Google Scholar
  13. 13.
    McMillan, S., Orin, D.E., McGhee, R.B.: Efficient dynamic simulation of an underwater vehicle with a robotic manipulator. IEEE Trans. Syst. Man Cybern. 25, 1194–1206 (1995)CrossRefGoogle Scholar
  14. 14.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control, 1st edn. Springer Publishing Company, Incorporated (2008)Google Scholar
  15. 15.
    Jazar, R.: Theory of Applied Robotics: Kinematics, Dynamics, and Control, 2nd edn. Springer, New York (2010).MATHGoogle Scholar
  16. 16.
    Corke, P.: A robotics toolbox for MATLAB. IEEE Robot. Autom. Mag. 3(1), 24–32 (1996)CrossRefGoogle Scholar
  17. 17.
    Craig, J.J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley series in electrical and computer engineering: Control engineering. Addison-Wesley (1989)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Drexel Autonomous Systems LabDrexel UniveristyPhiladelphiaUSA

Personalised recommendations