Journal of Intelligent & Robotic Systems

, Volume 69, Issue 1–4, pp 475–488 | Cite as

Vision-Based Detection and Tracking of Airborne Obstacles in a Cluttered Environment

  • Sungwook Cho
  • Sungsik Huh
  • David Hyunchul Shim
  • Hyoung Sik Choi


This paper proposes an image processing algorithm for ‘sense-and-avoid’ of aerial vehicles in short-range at low altitude and shows flight experiment results. Since it can suppress the negative effects cause cluttered environment in image sequence such as the ground seen or sensitivity of threshold value during low-altitude flight, proposed algorithm has better performance of collision avoidance. Furthermore, proposed algorithm can perform better than simple color-based detection and tracking methods because it takes the characteristics of vehicle dynamics into account in image plane. The performance of proposed algorithm is validated by post image processing using video clip taken from flight test and actual flight test with simple avoidance maneuver.


Unmanned aerial vehicle (UAV) Vision-based control Vision-based detection and tracking Airborne obstacle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Airplane Flying Handbook: U.S. Department of Transportation Federal Aviation Administration. FAA-H-8083–3A (2004)Google Scholar
  2. 2.
    Zeitlin, A.D.: Technology milestones - detect, sense & avoid for unmanned aircraft systems. In: AIAA Infotech@Aerospace Conference and Exhibit, AIAA-2007-2765 (2007)Google Scholar
  3. 3.
    Seong, K.-J., Kim, E.-T., Kim, S.-P.: Development trend of the autonomous flight control technology. Current Industrial and Technological Trends in Aerospace 6(2), 143–153 (2008)Google Scholar
  4. 4.
    Ross, P.E.: When will we have unmanned commercial airliners? IEEE Spectrum. (2011). Accessed 1 Dec 2011
  5. 5.
    Oh, S.-H., Koo, S.-O.: Requirements for the introduction of UAVs into airspace. Current Industrial and Technological Trends in Aerospace 4(2), 244–251 (2004)Google Scholar
  6. 6.
    Cho, S.-J., Jang, D.-S., Tahk, M.-J., Koo, H.-J., Kim, J.-S.: Collision avoidance maneuver of unmanned aerial vehicles applying TCAS-II. J. KSASS 34(4), 33–39 (2006)Google Scholar
  7. 7.
    Carnie, R., Walker, R., Corke, P.: Image processing algorithms for UAV sense and avoid. In: IEEE Int’ Conference on Robotics and Automation, Orlando, USA, pp. 2848–2853 (2006)Google Scholar
  8. 8.
    Johnson, E.N., Calise, A.J., Watanabe, Y., Ha, J., Neidhoefer, J.C.: Real-time vision-based relative aircraft navigation. JACIC 4, 707–738 (2007)CrossRefGoogle Scholar
  9. 9.
    Lai, J., Mejias, L., Ford, J.J.: Airborne vision-based collision-detection system. J. Field Robotics 28(2), 137–157 (2011)MATHCrossRefGoogle Scholar
  10. 10.
    Mejias, L., McNamara, S., Lai, J., Ford, J.J.: Visionbased detection and tracking of aerial targets for UAV collision avoidance. In: IEEE/RSJ Int’ Conference Intelligent Robots S. and Systems, 18 Oct 2010Google Scholar
  11. 11.
    Cho, S., Huh, S., Choi, H.S., Shim, D.H.: An image processing algorithm for detection and tracking of aerial vehicles. In: 50th IEEE Conference on Decision and Control, pp. 7482–7487, Hilton Orlando Bonnet Creek Hotel, Orlando, USA, 12–15 Dec 2011Google Scholar
  12. 12.
    Shakernia, O., Chen, W.-Z., Graham, S., Zvanya, J., White, A., Weingarten, N., Raska, V.M.: Sense-and-Avoid (SAA) flight test and lessons learned. In: AIAA Infotech@Aerospace, Rohnert Park, California (2007)Google Scholar
  13. 13.
    Bradski, G., Kaehler, A.: Learning OpenCV. In: O’REILLY (2008)Google Scholar
  14. 14.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, UK (2003)Google Scholar
  15. 15.
    Shi, J., Tomasi, C.: Good features to track. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)Google Scholar
  16. 16.
    Fusiello, A., Trucco, E., Tommasini, T., Roberto, V.: Improving feature tracking with robust statistics. Pattern Anal. Appl. 2(4), 312–3200 (1999)CrossRefGoogle Scholar
  17. 17.
    Bouguet, J.-Y.: Pyramidal implementation of the Lucas Kanade feature tracker. Intel Corporation, Microprocessor Research Labs. (2000)
  18. 18.
    Streit, R.L., Luginbuhl, T.E.: Probabilistic multi-hypothesis tracking. NUWC-NPT Technical Report 10.428 (1995)Google Scholar
  19. 19.
    Lee, D.J., Min, B.-M., Tahk, M.-J., Bang, H., Shim, D.H.: Autonomous flight control system design for a blended wing body. In: Int’ Conference on Control, Automation and Systems, Seoul, Korea, pp. 192–196 (2008)Google Scholar
  20. 20.
    You, D.-I., Shim, D.H.: Autonomous formation flight test of multi-micro aerial vehicles. J. Intell. Robot. Syst. 61(1–4), 321–337 (2011)CrossRefGoogle Scholar
  21. 21.
    Huh, S., Shim, D.H.: A vision-based landing system for small unmanned aerial vehicles using an airbag. Control. Eng. Pract. 18(7), 812–823 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sungwook Cho
    • 1
  • Sungsik Huh
    • 1
  • David Hyunchul Shim
    • 1
  • Hyoung Sik Choi
    • 2
  1. 1.Department of Aerospace Engineering, KAISTDaejeonSouth Korea
  2. 2.Korea Aerospace Research Institute (KARI)DaejeonSouth Korea

Personalised recommendations