Journal of Intelligent & Robotic Systems

, Volume 69, Issue 1–4, pp 57–67 | Cite as

Robust Surge Avoidance Control for a Low Pressure Compressor of a Turbojet Engine

  • Benedikt Alt
  • Elias Hermann


The aim of this paper is to improve the efficiency of a low pressure compressor within a turbojet engine. For this purpose a new feedback controller will be introduced which compares the actual compressor surge margin to a given reference value. Then, this new feedback controller calculates a deviation on the existing nozzle area schedule such that the overall efficiency of the controller is improved at steady state condition. The major contribution of this work consists in a robust control design approach leading to improved robustness properties and reduced calibration efforts for the controllers of future unmanned aircraft propulsion systems.


Energy efficient UAV systems Aircraft engine control Robust control Control applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, G.: Gas Turbines and Jet Propulsion. Philosophical Library, New York, USA (1955)Google Scholar
  2. 2.
    Casamassa, J.V., Bent, R.D.: Jet Aircraft Power Systems, 3rd edn. McGraw-Hill, New York, USA (1965)Google Scholar
  3. 3.
    Constant, E.W., II: The Origins of the Turbojet Revolution. John Hopkins Univ. Press, Baltimore, MD, USA (1980)Google Scholar
  4. 4.
    Treager, I.E.: Aircraft Gas Turbine Engine Technology, 2nd edn. McGraw-Hill, New York, USA (1979)Google Scholar
  5. 5.
    Spang, H.A., III, Brown, H.: Control of jet engines. Control. Eng. Pract. 7, 1043–1059 (1999)CrossRefGoogle Scholar
  6. 6.
    Mountford, K.D., Hierlwimmer, R.: Engine Control and Monitoring Systems: Möglichkeiten durch Einsatz moderner Elektronik und deren Herausforderung (in German). MTU Aero Engines GmbH (2003)Google Scholar
  7. 7.
    Richter, H.: Advanced Control of Turbofan Engines. Springer, New York (2012)CrossRefGoogle Scholar
  8. 8.
    Paduano, J.D., Epstein, A.H., Valavani, L., Longley, J.P., Greitzer, E.M., Guenette, G.R.: Active control of rotating stall in a low-speed axial compressor. J. Turbomach. 115, 48–56 (1993)CrossRefGoogle Scholar
  9. 9.
    Derouineau, J.L.: More electric architectures and the impact on propulsion systems. In: Proceedings of the 17th International Symposium on Air Breathing Engines, Munich, Germany (2005)Google Scholar
  10. 10.
    Richter, E.: A jet engine integrated generator. In: Proceedings of the 15th Intersociety Energy Conversion Engineering, Conference, Seattle, WA, USA (1980)Google Scholar
  11. 11.
    Ouzts, P.J., Lorenzo, C.F., Merril, W.C.: Screening Studies of Advanced Control Concepts for Airbreathing Engines. NASA-TM-106042 (1993)Google Scholar
  12. 12.
    Adibhatla, S.S., Lewis, T.: Model-based intelligent digital engine control. In: Proceedings of the 33rd AIAA Joint propulsion conference and exhibit. Seattle, WA, USA (1997)Google Scholar
  13. 13.
    Kreiner, A.: Modellbasierte Regelung der Triebwerke von Hyperschallflugzeugen (in German), doctoral thesis, Technical University of Munich, Germany (2001)Google Scholar
  14. 14.
    Lietzau, K., Kreiner, A.: Model based control concepts for jet engines. In: Proceedings of the ASME Turbo Expo. New Orleans, LA, USA (2001)Google Scholar
  15. 15.
    Kwakernaak, H.: Robust control and H-optimization – Tutorial paper. Automatica 29(2), 255–273 (1993)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Zhou, K., Doyle, J.C.: Essentials of Robust Control. Prentice-Hall, Upper Saddle River, NJ, USA (1998)Google Scholar
  17. 17.
    Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River, NJ, USA (1996)MATHGoogle Scholar
  18. 18.
    Gu, D.-W., Petkov, P.H., Konstantinov, M.M.: Robust Control Design with Matlab. Springer-Verlag, New York (2005)MATHGoogle Scholar
  19. 19.
    Postlethwaite, I., Samar, R., Choi, B.-W., Gu, D.-W.: A digital multimode H controller for the spey turbofan engine. In: Proceedings of the European Control Conference, Rome, Italy (1995)Google Scholar
  20. 20.
    Frederic, D., Garg, S., Adibhafla, S.: Turbofan engine control using robust multivariable control technologies. In: Proceedings of the Joint Propulsion Conference, Lake Buena Vista, FL, USA (1996)Google Scholar
  21. 21.
    Härefors, M.: Application of H robust control to the RM12 jet engine. Control. Eng. Pract. 5(9), 1189–1201 (1997)CrossRefGoogle Scholar
  22. 22.
    Adibhatla, S., Lewis, T.:Model-based intelligent digital engine control. 33rd AIAA Joint Propulsion Conference and Exhibit, Seattle, WA, USA (1997)Google Scholar
  23. 23.
    Richter, H.: Aircraft engine controls with limit protection: multiple sliding modes with override logic: limit management in aircraft engine controls. AIAA J. Guid. Control Dyn. 35(4), 1132–1142 (2012)CrossRefGoogle Scholar
  24. 24.
    Dwyer, W.J.: Adaptive model-based control applied to a turbofan aircraft engine. Master thesis, Massachusetts Institute of Technology (1990)Google Scholar
  25. 25.
    Eveker, K.M., Nett, C.N.: Model development for active surge control / rotating stall avoidance in aircraft gas turbine engines. In: Proceedings of the 10th American Control Conference. Boston, MA, USA (1991)Google Scholar
  26. 26.
    Dhingra, M., Neumeier, Y., Prasad, J.: Active compressor stability management and impact on engine operability. In: Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, FL, USA (2004)Google Scholar
  27. 27.
    Gravdahl, J.T., Egeland, O.: Compressor Surge and Rotating Stall – Modeling and Control. Springer, London, UK (1998)Google Scholar
  28. 28.
    Badmus, O.O., Chowdhary, S., Eveker, K.M., Nett, C.N., Rivera, C.J.: Simplified approach for control of rotating stall part 1: theoretical development. J Propuls Power 11(6), 1195–1209 (1995)CrossRefGoogle Scholar
  29. 29.
    Badmus, O.O., Chowdhary, S., Eveker, K.M., Nett, C.N., Rivera, C.J.: Simplified approach for control of rotating stall part 2: experimental results. J Propuls Power 11(6), 1210–1223 (1995)CrossRefGoogle Scholar
  30. 30.
    Evans, C.: Testing and modelling of aircraft gas turbines: an introduction and overview. UKACC International Conference on CONTROL ’98, Swansea, UK (1998)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.MTU Aero Engines GmbHMunichGermany
  2. 2.German Air Force (SysZ LfzT)ErdingGermany

Personalised recommendations