Journal of Intelligent & Robotic Systems

, Volume 68, Issue 1, pp 53–68 | Cite as

Aerodynamic Modelling and Experimental Identification of a Coaxial-Rotor UAV

  • Arnaud Koehl
  • Hugues Rafaralahy
  • Mohamed Boutayeb
  • Bastien Martinez


A comprehensive design of a Gun Launched Micro Air Vehicle (GLMAV) is presented. The GLMAV rotorcraft is a new Micro Air Vehicle (MAV) concept using two-bladed coaxial contra-rotating rotors and a cyclic swashplate. The MAV packaged in a projectile is launched using the energy delivered by a portable weapon. When it reaches the apogee, the projectile is transformed in such a way that the MAV becomes operational over the zone to be observed. A detailed GLMAV nonlinear mathematical model is presented for hover and near-hover flight conditions and identified from experimental load data using a strain-gage aerodynamic balance. Simplifications brought to the aerodynamic submodel have permitted its linearization in the parameter space. The parameter estimation was based on the Kalman filter estimation method applied to the simplified aerodynamic model and using the input-output data from the experiment. The persistently exciting condition is given in terms of physical variables of the GLMAV through two simple expressions. The identification results are presented and validated through comparisons between the model output and real load data.


Unmanned aerial vehicles System identification Aerospace engineering Nonlinear dynamical systems Aerospace simulation Process design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmad, S.M., Chipperfield, A.J., Tokhi, M.O.: Modelling and control of a twin rotor multi-input multi-output system. In: Proceedings of the American Control Conference, pp. 1720–1724. AACC, Chicago (2000)Google Scholar
  2. 2.
    Bhandari, S., Colgren, R.: 6-dof dynamic model for a raptor 50 UAV helicopter including stabilizer bar dynamics. In: Proceedings of AIAA Modeling and Simulation Technologies Conference and Exhibit. AIAA, Keystone (2006)Google Scholar
  3. 3.
    Cai, G., Cai, A.K., Chen, B.M., Lee, T.H.: Construction, modeling and control of a mini autonomous UAV helicopter. In: Proceedings of the IEEE International Conference on Automation and Logistics. IEEE, Qingdao (2008)Google Scholar
  4. 4.
    Castillo, P., Lozano, R., Dzul, A.E.: Modelling and Control of Mini-flying Machines. Springer Advances in Industrial Control (2005)Google Scholar
  5. 5.
    Cerro, J.D., Valero, J., Vidal, J., Barrientos, A.: Modeling and identification of a small unmanned helicopter. In: Proceedings of IEEE Automation Congress, pp. 461–466. IEEE, Seville (2004)Google Scholar
  6. 6.
    Cunha, R., Silvestre, C.: Dynamic modeling and stability analysis of model-scale helicopters with Bell–Hiller stabilizing bar. In: Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit. AIAA, Austin (2003)Google Scholar
  7. 7.
    Ganguli, R.: Survey of recent developments in rotorcraft design optimization. J. Aircr. 441(3), 493–510 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Garratt, M., Ahmed, B., Pota, H.R.: Platform enhancements and system identification for control of an unmanned helicopter. In: Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision. IEEE, Singapore (2008)Google Scholar
  9. 9.
    Gnemmi, P., Haertig, J.: Concept of a gun launched micro air vehicle. In: Proceedings of 26th AIAA Applied Aerodynamics Conference. AIAA, Honolulu (2008)Google Scholar
  10. 10.
    Gnemmi, P., Koehl, A., Martinez, B., Changey, S., Theodoulis, S.: Modeling and control of two GLMAV hover-flight concepts. European Micro Aerial Vehicle Conference and Flight Competition. French-German Reasearch Institute of Saint-Louis, Delft (2009)Google Scholar
  11. 11.
    Hall, A.P.K., Wong, K.C., Auld, D.: Coaxial aero-mechanical analysis of MAV rotorcraft with rotor interaction for optimisation. In: Proceedings of 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. AIAA, Victoria (2008)Google Scholar
  12. 12.
    Jategaonkar, R.V.: Flight Vehicle System Identification: A Time Domain Methodology. AIAA Progress in Astronautics and Aeronautics (2006)Google Scholar
  13. 13.
    Kirschstein, S., Alles, W.: Parameter identification with a controlled free flying model of a spaceplane. Aerosp. Sci. Technol. 9(4), 348–356 (2005)CrossRefGoogle Scholar
  14. 14.
    Klein, V., Morelli, E.A.: Aircraft System Identification Theory and Practice. AIAA Education Series (2006)Google Scholar
  15. 15.
    Koehl, A., Rafaralahy, H., Martinez, B., Boutayeb, M.: Modeling and identification of a launched micro air vehicle: design and experimental results. In: AIAA Modeling and Simulation Technologies Conference and Exhibit, AIAA/MST, Toronto (2010)Google Scholar
  16. 16.
    Krashanitsa, R., Platanitis, G., Silin, B., Shkarayev, S.: Aerodynamics and controls design for autonomous micro air vehicles. In: Proceedings of AIAA Atmospheric Flight Mechanics Conference and Exhibit. AIAA, Keystone (2006)Google Scholar
  17. 17.
    Leith, D.J.: Identification of the SA-330 Puma helicopter. IEE Proc. Control Theory Appl. 141(2), 130–136 (1994)CrossRefGoogle Scholar
  18. 18.
    Mettler, B.: Identification Modeling and Characteristics of Miniature Rotorcraft. Kluwer Academic Publishers (2003)Google Scholar
  19. 19.
    Pflimlin, J.M.: Commande d’un Minidrone à Hélice Carénée: De la Stabilisation dans le Vent à la Navigation Autonome. Ph.D. thesis, Ecole Doctorale Systèmes, Laboratoire d’Analyse et d’Architecture des Systèmes, Toulouse (2006)Google Scholar
  20. 20.
    Pines, D.J., Bohorquez, F.: Challenges facing future micro-air-vehicle development. J. Aircr. 43(2), 290–305 (2006)CrossRefGoogle Scholar
  21. 21.
    Ramasamy, M., Lee, T.E., Leishman, J.G.: Flowfield of a rotating-wing micro air vehicle. J. Aircr. 44(4), 1236–1244 (1994)CrossRefGoogle Scholar
  22. 22.
    Rebuffet, P.: Aérodynamique Expérimentale. Béranger-Dunod (1950)Google Scholar
  23. 23.
    Smith, T.R., Shook, L., Uhelsky, F., McCoy, E., Krasinski, M., Limaye, S.: Ballute and parachute decelerators for FASM/QUICKLOOK UAV. In: Proceedings of Aerodynamic Decelerator Systems Technology Conference and Seminar. AIAA, Monterey (2003)Google Scholar
  24. 24.
    Taylor, D., Ol, M., Cord, T.: SkyTote advanced cargo delivery system. In: AIAA/ICAS International Air and Space Symposium and Exposition: The Next 100 Years. AIAA, Dayton (2003)Google Scholar
  25. 25.
    Valvanis, K.P.: Advances in Unmanned Aerial Vehicles State of the Art and the Road to Autonomy. Springer (2007)Google Scholar
  26. 26.
    Walchko, K.J., Nechyba, M.C., Schwartz, E., Arroyo, A.: Embedded Low Cost Inertial Navigation System. Florida Conference on Recent Advances in Robotics, University of Florida, Dania Beach (2003)Google Scholar
  27. 27.
    Wang, H., Wang, D., Niu, X.: Modeling and hover control of a novel unmanned coaxial rotor/ducted-fan helicopter. In: Proceedings of the IEEE International Conference on Automation and Logistics. IEEE, Jinan (2007)Google Scholar
  28. 28.
    Wereley, N.M., Pines, D.J.: Feasibility Study of a Smart Submunition: Deployment From a Conventional Weapon. ARL-CR-0475, Army Research Laboratory, Aberdeen Proving Ground (2001)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Arnaud Koehl
    • 1
    • 2
  • Hugues Rafaralahy
    • 2
  • Mohamed Boutayeb
    • 2
  • Bastien Martinez
    • 1
  1. 1.French-German Research Institute of Saint-LouisSaint-LouisFrance
  2. 2.Research Center for Automatic Control of NancyNancy-Université, CNRSCosnes et RomainFrance

Personalised recommendations