Journal of Intelligent & Robotic Systems

, Volume 64, Issue 3–4, pp 427–446 | Cite as

A HIL simulator of Flexible-link Mechanisms

  • Paolo Boscariol
  • Alessandro Gasparetto
  • Vanni Zanotto


The aim of this paper is to develop a Hardware-In-the-Loop (HIL) simulator of flexible-link mechanisms. The core of the simulator is a highly accurate FEM nonlinear dynamic model of planar mechanisms. The accuracy of the proposed simulator is proved by comparing the response of the virtual model with the response of the real mechanism by using the same real controller. Results are provided by the use of classical controllers real-time capability of the dynamic model is guaranteed by a symbolic manipulation of the equations that describe the mechanism, in order to avoid the numerical inversion of the large mass matrix of the system. This HIL simulator is a valuable tool for the tuning of closed-loop control strategies for this class of mechanisms, since it allows to reduce the safety risks and the time needed to fine tune the real-time controller parameters.


Mechanical vibrations Hardware-In-the-Loop Flexible-link mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dwivedy, A.K., Eberhard, P.: Dynamical analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Leitner, J.: Space technology transition using hardware in the loop simulation. In: Proc. 1996 Aerospace Applications Conference. 2, 303–311Google Scholar
  3. 3.
    Hanselman, H.: Hardware-in-the-loop simulation testing and its integration into a CACSD toolset. In: Proc. IEEE International Symposium on Computer-Aided Control System Design, 15–18 September 1996Google Scholar
  4. 4.
    Pritshow, G., Röck, S.: Hardware in the loop simulation of machine tools. CIRP Ann. 53(1), 259–298 (2004)CrossRefGoogle Scholar
  5. 5.
    Stoeppler, G., Menzel, T., Douglas, S: Hardware-in-the-loop simulation of machine tools and manufacturing systems. Comput. Control Eng. J. 16(1), 10–15 (2005)CrossRefGoogle Scholar
  6. 6.
    Hu, X.: Applying robot-in-the-loop simulation to mobile robot systems. In: Proc. 12th International Conference on Advanced Robotics ICAR (2005)Google Scholar
  7. 7.
    Aghili, F., Piedboeuf, J.C.: Contact dynamics emulation for hardware-in-loop simulation of robots interacting with environment. In: Proc. ICRA ’02. IEEE International Conference on Robotics and AutomationGoogle Scholar
  8. 8.
    Chabra, R., Emami, M.R.: Concurrent design of robot manipulators using hardware-in-the-loop simulation. In: Proc. 2008 IEEE International Conference on Technologies for Practical Robot Applications (TePRA). Massachusetts, USA (2008)Google Scholar
  9. 9.
    Martin A., Scot, E., Emami, M.R.: Design and development of robotic hardware-in-the-loop simulation. In: Proc. 9th ICAR International Conference on Control, Automation, Robotics and Vision, vol. 1, no. 6 (2006)Google Scholar
  10. 10.
    Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)CrossRefGoogle Scholar
  11. 11.
    Bringmann E., Kramer A.: Model-based testing of automotive systems. 2008 1st IEEE International Conference on Software Testing, Verification, and Validation, pp. 485–493 (2008)Google Scholar
  12. 12.
    Isermann, R., Schaffnit, J., Sinsel, S.: Hardware-in-the-loop simulation for the design and testing of engine-control systems. Control Eng. Pract. 7(5), 643–653 (1999)CrossRefGoogle Scholar
  13. 13.
    Boscariol, P., Gasparetto, A., Zanotto, V.: Active position and vibration control of a flexible links mechanism using model-based predictive control. J. Dyn. Syst. Meas. Control 132(1), 014506 (2010)CrossRefGoogle Scholar
  14. 14.
    Boscariol, P., Gasparetto, A., Zanotto, V.: Model predictive control of a flexible links mechanism. J. Intell. Robot. Syst. 58(2), 125–147 (2010)MATHCrossRefGoogle Scholar
  15. 15.
    Boscariol, P., Gasparetto, A., Zanotto, V.: Vibrations reduction in a flexible link mechanism through the synthesis of an MPC controller. In: Proc: IEEE International Conference on Mechatronics ICM 2009, Malaga, Spain (2009)Google Scholar
  16. 16.
    Giovagnoni M.: A numerical and experimental analysis of a chain of flexible bodies. ASME J. Dyn. Syst. Meas. Control 113, 73–80 (1994)CrossRefGoogle Scholar
  17. 17.
    Trevisani, A., Valcher, M.E.: An energy-based adaptive control design technique for multibody-mechanisms wit flexible-links. IEEE/ASME Trans. Mechatron. 10(5), 571–580 (2005)CrossRefGoogle Scholar
  18. 18.
    Gasparetto A., Zanotto, V.: Vibration reduction in a flexible-link mechanism through synthesis of an optimal controller. Meccanica 41(6), 611–622 (2006)MATHCrossRefGoogle Scholar
  19. 19.
    Caracciolo, R., Richiedei, D., Trevisani, A.: Design and experimental validation of piecewise-linear state observers for flexible link mechanism. Meccanica 41(6), 623–637 (2006)MATHCrossRefGoogle Scholar
  20. 20.
    Chang, LW., Hamilton, JF: The kinematics of robotic manipulators with flexible links using an equivalent rigid link system (ERLS) model. ASME J. Dyn. Syst. Meas. Control 113, 48–53 (1991)CrossRefGoogle Scholar
  21. 21.
    Mostaghel N., Davis T.: Representation of coulomb friction for dynamic analysis. Earthq. Eng. Struct. Dyn. 26, 541–548 (1997)CrossRefGoogle Scholar
  22. 22.
    Gasparetto, A.: On the modeling of flexible-link planar mechanism: experimental validation of an accurate dynamic model. ASME J. Dyn. Syst. Meas. Control 126(2), 365–375 (2004)CrossRefGoogle Scholar
  23. 23.
    Naidu DS.: Optimal control systems. CRC (2003)Google Scholar
  24. 24.
    Franklin, F.G., Powell, F.G., Workman, M.L.: Digital control of dynamic systems, 2nd edn. Addison Wesley (1990)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Paolo Boscariol
    • 1
  • Alessandro Gasparetto
    • 1
  • Vanni Zanotto
    • 1
  1. 1.DIEGMUniversity of UdineUdineItaly

Personalised recommendations