Journal of Intelligent & Robotic Systems

, Volume 64, Issue 3–4, pp 365–385 | Cite as

Operator Performance in Exploration Robotics

A Comparison Between Stationary and Mobile Operators
  • Alberto Valero
  • Gabriele Randelli
  • Fabiano Botta
  • Miguel Hernando
  • Diego Rodríguez-Losada


Mobile robots can accomplish high-risk tasks without exposing humans to danger: robots go where humans fear to tread. Until the time in which completely autonomous robots are fully deployed, remote operators will be required in order to fulfill desired missions. Remotely controlling a robot requires that the operator receives the information about the robot’s surroundings, as well as its location in the scenario. Based on a set of experiments conducted with users, we evaluate the performance of operators when they are provided with a hand-held-based interface or a desktop-based interface. Results show how performance depends on the task asked of the operator and the scenario in which the robot is moving. The conclusions prove that the operator’s intra-scenario mobility when carrying a hand-held device can counterbalance the limitations of the device. By contrast, the experiments show that if the operator cannot move inside of the scenario, his performance is significantly better when using a desktop-based interface. These results set the basis for a transfer of control policy in missions involving a team of operators, some equipped with hand-held devices and others working remotely with desktop-based computers.


Interfaces Human-robot-interaction Robot interfaces Search and rescue robots Experimental evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, J.A.: Critical Considerations for Human-robot Interface Development. Technical report, 2002 AAAI Fall Symposium: Human Robot Interactiomn Technical Report (2002)Google Scholar
  2. 2.
    Cohen, G.: Memory in the Real World. Erlbaum, Hove (1989)Google Scholar
  3. 3.
    Driewer, F., Sauer, M., Schilling, K.: Design and evaluation of an user interface for the coordination of a group of mobile robots. In: 17th Iternational Symposium on Robot and Human Interactive Communication. RO-MAN 2008, pp. 237–242 (2008)Google Scholar
  4. 4.
    Drury, J.L., Hestand, D., Yanco, H.A., Scholtz, J.: Design guidelines for improved human-robot interaction. In: Extended abstracts of the 2004 Conference on Human Factors in Computing Systems, p. 1540 (2004)Google Scholar
  5. 5.
    Drury, J.L., Keyes, B., Yanco, H.A.: Lassoing hri: analyzing situation awareness in map-centric and video-centric interfaces. In: Proceedings of the Second ACM SIGCHI/SIGART Conference on Human-Robot Interaction, pp. 279–286 (2007)Google Scholar
  6. 6.
    Drury, J.L., Yanco, H.A., Scholtz, J.C.: Beyond usability evaluation: analysis of human-robot interaction at a major robotics competition. Human-Comput. Interact. J. 19(1–2), 117–149 (2004)Google Scholar
  7. 7.
    Fong, T., Thorpe, C., Glass, B.: Pdadriver: a handheld system for remote driving. In: IEEE International Conference on Advanced Robotics (2003)Google Scholar
  8. 8.
    Fong, T., Thorpe, C.E., Baur, C.: Advanced interfaces for vehicle teleoperation: collaborative control, sensor fusion displays, and remote driving tools. Auton. Robots 11(1), 77–85 (2001)MATHCrossRefGoogle Scholar
  9. 9.
    Fong, T., Thorpe, C.E., Baur, C.: Robot, asker of questions. Robot. Auton. Syst. 42(3–4), 235–243 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: 11th International Conference on Advanced Robotics (ICAR 2003), pp. 317–323. Portugal (2003)Google Scholar
  11. 11.
    Hedström, A., Christensen, H.I., Lundberg, C.: A wearable gui for field robots. In: Field and Service Robotics, pp. 367–376 (2005)Google Scholar
  12. 12.
    Herrmann, T.: Blickpunkte und Blickpunktsequenzen. In: Sprache & Kognition, vol. 15, pp. 217–233 (1996)Google Scholar
  13. 13.
    Httenrauch, H., Norman, M.: Pocketcero—mobile interfaces for service robots. In: Proceedings of the International Workshop on Human Computer Interaction with Mobile Devices (2001)Google Scholar
  14. 14.
    Humphrey, C.M., Henk, C., Sewell, G., Williams, B.W., Adams, J.A.: Assessing the scalability of a multiple robot interface. In: Proceedings of the Second ACM SIGCHI/SIGART Conference on Human-Robot Interaction, HRI 2007, pp. 239–246. Arlington, Virginia, 10–12 March 2007Google Scholar
  15. 15.
    Kaymaz-Keskinpala, H., Adams, J.A.: Objective data analysis for a pda-based human robotic interface. In: Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, pp. 2809–2814 (2004)Google Scholar
  16. 16.
    Kaymaz-Keskinpala, H., Kawamura, K., Adams, J.A.: Pda-based human-robotic interface. In: Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, vol. 4, pp. 3931–3936 (2003)Google Scholar
  17. 17.
    Nielsen, C.W., Goodrich, M.A.: Comparing the usefulness of video and map information in navigation tasks. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, HRI 2006, pp. 95–101 (2006)Google Scholar
  18. 18.
    Nielsen, C.W., Goodrich, M.A., Ricks, R.W.: Ecological interfaces for improving mobile robot teleoperation. IEEE T. Robotic. Autom. 23(5), 927–941 (2007)Google Scholar
  19. 19.
    Perzanowski, D., Schultz, A.C., Adams, W., Marsh, E., Bugajska, M.D.: Building a multimodal human-robot interface. IEEE Intell. Syst. 16(1), 16–21 (2001)CrossRefGoogle Scholar
  20. 20.
    Scholtz, J., Young, J., Drury, J.L., Yanco, H.A.: Evaluation of human-robot interaction awareness in search and rescue. In: Robotics and Automation, 2004. Proceedings ICRA’04, vol. 3, pp. 2327–2332. IEEE (2004)Google Scholar
  21. 21.
    Skubic, M., Bailey, C., Chronis, G.: A sketch interface for mobile robots. In: Proc. IEEE 2003 Conf. on SMC, pp. 918–924 (2003)Google Scholar
  22. 22.
    Valero, A., Mecella, M., Matia, F., Nardi, D.: Adaptative Human-Robot Interaction for Mobile Robots. In: Proceedings of the IEEE 17th Iternational Symposium on Robot and Human Interactive Communication. RO-MAN. Munchen (2008)Google Scholar
  23. 23.
    Werner, S., Krieg-Brückner, B. Mallot, H.A., Schweizer, K., Freksa, C.: Spatial cognition: the role of landmark, route, and survey knowledge in human and robot navigation. In: GI Jahrestagung, pp. 41–50 (1997)Google Scholar
  24. 24.
    Yanco, H.A., Drury, J.L.: “Where am i?” acquiring situation awareness using a remote robot platform. In: Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, pp. 2835–2840. The Hague, Netherlands, 10–13 October 2004Google Scholar
  25. 25.
    Yanco, H.A., Drury, J.L.: Rescuing interfaces: a multi-year study of human-robot interaction at the aaai robot rescue competition. Auton. Robots 22(4), 333–352 (2007)CrossRefGoogle Scholar
  26. 26.
    Yanco, H.A., Drury, J.L., Scholtz, J.: Awareness in human-robot interactions. In: Proceedings of the IEEE Conference on Systems, Man and Cybernetics. Washington, DC (2003)Google Scholar
  27. 27.
    Yanco, H.A., Keyes, B., Drury, J.L., Nielsen, C.W., Few, D.A., Bruemmer, D.J.: Evolving interface design for robot search tasks. J. F. Robot. 24(8–9), 779–799 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alberto Valero
    • 1
  • Gabriele Randelli
    • 2
  • Fabiano Botta
    • 3
  • Miguel Hernando
    • 4
  • Diego Rodríguez-Losada
    • 4
  1. 1.Robotics Lab.Universidad Carlos III de MadridLeganés (Madrid)Spain
  2. 2.Department of Computer and System Sciences Antonio RubertiSapienza Università di RomaRomeItaly
  3. 3.Department of PsychologySapienza Università di RomaRomeItaly
  4. 4.Centro de Automatica y Robótica UPM-CSICMadridSpain

Personalised recommendations