Advertisement

Journal of Intelligent & Robotic Systems

, Volume 64, Issue 2, pp 179–196 | Cite as

Dynamic Behavior Sequencing for Hybrid Robot Architectures

  • Gilbert L. Peterson
  • Jeffrey P. Duffy
  • Daylond J. Hooper
Article
  • 171 Downloads

Abstract

Hybrid robot control architectures separate planning, coordination, and sensing and acting into separate processing layers to provide autonomous robots both deliberative and reactive functionality. This approach results in systems that perform well in goal-oriented and dynamic environments. Often, the interfaces and intents of each functional layer are tightly coupled and hand coded so any system change requires several changes in the other layers. This work presents the dynamic behavior hierarchy generation (DBHG) algorithm, which uses an abstract behavior representation to automatically build a behavior hierarchy for meeting a task goal. The generation of the behavior hierarchy occurs without knowledge of the low-level implementation or the high-level goals the behaviors achieve. The algorithm’s ability to automate the behavior hierarchy generation is demonstrated on a robot task of target search, identification, and extraction. An additional simulated experiment in which deliberation identifies which sensors to use to conserve power shows that no system modification or predefined task structures is required for the DBHG to dynamically build different behavior hierarchies.

Keywords

Hybrid control architecture Behavior hierarchies Task control language 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)Google Scholar
  2. 2.
    Bonasso, R.P., Firby, J., Gat, E., David, K., Miller, D.P., Slack, M.G.: Experiences with an architecture for intelligent, reactive agents. J. Exp. Theor. Artif. Intell. 9(2/3), 237–256 (1997)CrossRefGoogle Scholar
  3. 3.
    Borenstein, J., Koren, Y.: The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 7(3), 278–288 (1991). doi: 10.1109/70.88137 CrossRefGoogle Scholar
  4. 4.
    Connell, J.H.: SSS: a hybrid architecture applied to robot navigation. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pp. 2719–2724 (1992)Google Scholar
  5. 5.
    Despouys, O., Ingrand, F.F.: Propice-plan: toward a unified framework for planning and execution. In: Proceedings of the 5th European Conference on Planning. Springer, London, UK, pp. 278–293 (2000)Google Scholar
  6. 6.
    Firby, R.J.: Adaptive execution in complex dynamic worlds. Tech. Rep. YALEU/CSD/RR #672, Yale University (1989)Google Scholar
  7. 7.
    Gat, E.: ESL: a language for supporting robust plan execution in embedded autonomous agents. In: Proceedings of the IEEE Aerospace Conference, vol. 1, pp. 319–324 (1997)Google Scholar
  8. 8.
    Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems, pp. 317–323 (2003)Google Scholar
  9. 9.
    Hoey, J., Staubin, R., Hu, A., Boutilier, C.: Spudd: stochastic planning using decision diagrams. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 279–288 (1999)Google Scholar
  10. 10.
    Hurdus, J.G., Hong, D.W.: Behavioral programming with hierarchy and parallelism in the DARPA urban challenge and robocup. In: Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 3193–3200 (2008)Google Scholar
  11. 11.
    Infantes, G., Ingrand, F., Ghallab, M.: Learning behaviors models for robot execution control (2006)Google Scholar
  12. 12.
    Ingrand, F.F., Georgeff, M.P., Rao, A.S.: An architecture for real-time reasoning and system control. IEEE Intell. Syst. Their Appl. 7(6), 34–44 (1992)Google Scholar
  13. 13.
    Ingrand, F.F., Chatila, R., Alami, R., Robert, F.: PRS: a high level supervision and control language for autonomous mobile robots. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, pp. 43–49 (1996)Google Scholar
  14. 14.
    Konolige, K., Myers, K., Ruspini, E., Saffiotti, A.: The Saphira architecture: a design for autonomy. J. Exp. Theor. Artif. Intell. 9(2/3), 215–235 (1997)CrossRefGoogle Scholar
  15. 15.
    Lemai, S., Ingrand, F.F.: Interleaving temporal planning and execution in robotics domains. In: Proceedings of the 19th National Conference on Artifical Intelligence, pp. 617–622 (2004)Google Scholar
  16. 16.
    Long, M., Gage, A., Murphy, R.R., Valvanis, K.: Application of the distributed field robot architecture to a simulated demining task. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 3193–3200 (2005)Google Scholar
  17. 17.
    McDermott, D.: A reactive plan language. Tech. Rep. YALE/DCS/TR-864 (1991)Google Scholar
  18. 18.
    Murphy, R.R., Hershberger, D.: Handling sensing failures in autonomous mobile robots. Int. J. Rob. Res. 18(4), 382–400 (1999)CrossRefGoogle Scholar
  19. 19.
    Murphy, R.R., Mali, A.: Lessons learned in integrating sensing into autonomous mobile robot architectures. J. Exp. Theor. Artif. Intell. 9(2/3), 191–209 (1997)CrossRefGoogle Scholar
  20. 20.
    Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pp. 459–466 (2001)Google Scholar
  21. 21.
    Parker, L.E., Kannan, B.: Adaptive causal models for fault diagnosis and recovering in multi-robot teams. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2703–2710 (2006)Google Scholar
  22. 22.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ (2003)Google Scholar
  23. 23.
    Scheutz, M., Andronache, V.: Architectural mechanisms for dynamic changes of behavior selection strategies in behavior-based systems. IEEE Trans. Syst. Man Cybern. Part B 34(6), 2377–2395 (2004)CrossRefGoogle Scholar
  24. 24.
    Simmons, R., Goodwin, R., Haigh, K.Z., Koenig, S., O’Sullivan, J.: A layered architecture for office delivery robots. In: First International Conference on Autonomous Agents, pp. 235–242 (1997)Google Scholar
  25. 25.
    Simmons, R., Apfelbaum, D.: A task description language for robot control. In: Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1931–1937 (1998)Google Scholar
  26. 26.
    Urmson, C., et al.: Autonomous driving in urban environments: boss and the urban challenge. J. Field Robot. 25(8), 425–466 (2008)CrossRefGoogle Scholar
  27. 27.
    Williams, B.C., Ingham, M.D., Chung, S.H., Elliott, P.H.: Model-based programming of intelligent embedded systems and robotic space explorers. Proc. IEEE 91(1), 212–237 (2003)CrossRefGoogle Scholar
  28. 28.
    Woolley, B., Peterson, G.: Unified behavior framework for reactive robot control. J. Intell. Robot. Syst. 55(2), 155–176 (2009)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2011

Authors and Affiliations

  • Gilbert L. Peterson
    • 1
  • Jeffrey P. Duffy
    • 1
  • Daylond J. Hooper
    • 1
  1. 1.Air Force Institute of TechnologyWPAFBUSA

Personalised recommendations