Advertisement

Journal of Intelligent & Robotic Systems

, Volume 63, Issue 3–4, pp 503–523 | Cite as

A New Methodology for the Design of Passive Biped Robots: Determining Conditions on the Robot’s Parameters for the Existence of Stable Walking Cycles

  • Paul Vallejos
  • Javier Ruiz-del-Solar
  • Francisco Swett
Article

Abstract

Currently, passive robots are designed following a trial and error process in which the existence of a stable walking cycle for a given passive robot’s model is analyzed using Poincaré maps. The standard stability analysis procedure suffers from discretization aliasing, and it is not able to deal with complex passive models. In this paper a methodology that allows finding conditions on the robot’s parameters of a given passive model in order to obtain a stable walking cycle is proposed. The proposed methodology overcomes the aliasing problem that arises when Poincaré sections are discretized. Basically, it implements a search process that allows finding stable subspaces in the parameters’ space (i.e., regions with parameters’ combinations that produce stable walking cycles), by simulating the robot dynamics for different parameters’ combinations. After initial conditions are randomly selected, the robot’s dynamics is modeled step by step, and in the Poincaré section the existence of a walking cycle is verified. The methodology includes the definition of a search algorithm for exploring the parameters’ space, a method for the partition of the space in hypercubes and their efficient management using proper data structures, and the use of so-called design value functions that quantify the feasibility of the resulting parameters. Among the main characteristics of the proposed methodology are being robot independent (it can be used with any passive robot model, regardless of its complexity), and robust (stable subspaces incorporate a stability margin value that deals with differences between the robot’s model and its physical realization). The methodology is validated in the design process of a complex semi-passive robot that includes trunk, knees, and non-punctual feet. The robot also considers the use of actuators, controllers and batteries for its actuation.

Keywords

Biped robot Legged locomotion Passive dynamic walking Robot dynamics Stability Parameters’ conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coleman, M.J.: A stability study of a three-dimensional passive-dynamic model of human gait. Ph.D. Thesis, Cornell University (1998)Google Scholar
  2. 2.
    Collins, S.H., Wisse, M., Ruina, A.: A three-dimensional passive-dynamic walking robot with two legs and knees. Int. J. Rob. Res. 20(7), 607–615 (2001)CrossRefGoogle Scholar
  3. 3.
    Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)CrossRefGoogle Scholar
  4. 4.
    Garcia, M.: Stability, scaling, and chaos in passive-dynamic gait models. Ph.d. Thesis, Sibley School of Mechanical and Aerospace Engineering, Cornell University (1999)Google Scholar
  5. 5.
    Goswami, A., Espiau, B., Keramane, A.: Limit cycles and their stability in a passive bipedal gait. In: Proceedings of the IEEE 1996 International Conference on Robotics and Automation, vol. 1, pp. 246–251. Minneapolis, USA (1996)Google Scholar
  6. 6.
    Goswami, A., Goswami, A., Thuilot, B., Thuilot, B., Espiau, B., Espiau, B.: Compass-like Biped Robot—Part i: Stability and bifurcation of passive gaits. Tech. Rep. 2996, INRIA: Institut National de Recherche en Informatique et en Automatique (1996)Google Scholar
  7. 7.
    Grizzle, J., Plestan, F., Abba, G.: Poincare’s method for systems with impulse effects: application to mechanical biped locomotion. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 4, pp. 3869–3876 (1999)Google Scholar
  8. 8.
    Grizzle, J., Abba, G., Plestan, F.: Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Automat. Contr. 46(1), 51–64 (2001)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Grizzle, J., Abba, G., Plestan, F.: Correction to “asymptotically stable walking for biped robots: analysis via systems with impulse effects”. IEEE Trans. Automat. Contr. 46(3), 513–513 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Haruna, M., Ogino, M., Hosoda, K., Asada, M.: Yet another humanoid walking—passive dynamic walking with torso under simple control. In: Proceedings of the 2001 IEEE International Conference on Intelligent Robots and Systems, vol. 1, pp. 259–264 (2001)Google Scholar
  11. 11.
    Hsu Chen, V.: Passive dynamic walking with knees: a point foot model. Master Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (2007)Google Scholar
  12. 12.
    Kajita, S., Espiau, B.: Springer Handbook of Robotics, 1st edn., chap. 16, pp. 361–389. Springer (2008)Google Scholar
  13. 13.
    Kuo, A.D.: Stabilization of lateral motion in passive dynamic walking. Int. J. Rob. Res. 18(9), 917–930 (1999)CrossRefGoogle Scholar
  14. 14.
    McGeer, T.: Passive dynamic walking. Tech. Rep. CSS-ISS TR 88-02, Simon Fraser University, Burnaby, British Columbia, Canada (1988)Google Scholar
  15. 15.
    McGeer, T.: Passive bipedal running. In: Proceedings of the Royal Society of London, Series B, Biological Sciences, vol. 240, pp. 107–134 (1990)Google Scholar
  16. 16.
    McGeer, T.: Passive dynamic walking. Int. J. Rob. Res. 9(2), 62–82 (1990)CrossRefGoogle Scholar
  17. 17.
    McGeer, T.: Passive walking with knees. In: Proceedings of the 1990 IEEE International Conference on Robotics and Automation, vol. 3, pp. 1640–1645 (1990)Google Scholar
  18. 18.
    McGeer, T.: Principles of Walking and Running. Advances in Comparative and Environmental Physiology, vol. 11, chap. 4. Springer-Verlag (1992)Google Scholar
  19. 19.
    McGeer, T.: Dynamics and control of bipedal locomotion. J. Theor. Biol. 163, 277–314 (1993)CrossRefGoogle Scholar
  20. 20.
    McGeer, T.: Passive dynamic biped catalogue, 1991. In: Proceedings of the 2nd International Symposium on Experimental Robotics II, pp. 465–490. Springer-Verlag, London, UK (1993)Google Scholar
  21. 21.
    Morimoto, J., Atkeson, C.: Learning biped locomotion. IEEE Robot. Autom. Mag. 14(2), 41–51 (2007)CrossRefGoogle Scholar
  22. 22.
    Morris, B., Grizzle, J.: A restricted Poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: application to bipedal robots. In: 44th IEEE Conference on Decision and Control and 2005 European Control Conference. CDC-ECC ’05, pp. 4199–4206 (2005)Google Scholar
  23. 23.
    Morris, B., Grizzle, J.: Hybrid invariance in bipedal robots with series compliant actuators. In: 45th IEEE Conference on Decision and Control, pp. 4793–4800 (2006)Google Scholar
  24. 24.
    Morris, B., Grizzle, J.: Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots. IEEE Trans. Automat. Contr. 54(8), 1751–1764 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ohta, H., Yamakita, M., Furuta, K.: From passive to active dynamic walking. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 4, pp. 3883–3885 (1999)Google Scholar
  26. 26.
    Paul, C., Yokoi, H., Matsushita, K.: Design and control of humanoid robot locomotion with passive legs and upper body actuation. In: Proceedings of the International Symposium on Robotics. Paris, France (2003)Google Scholar
  27. 27.
    Pratt, J.: Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots. Ph.d. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (2000)Google Scholar
  28. 28.
    Tedrake, R.: Actuating a simple 3d passive dynamic walker. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4656–4661 (2004)Google Scholar
  29. 29.
    Westervelt, E., Grizzle, J., Koditschek, D.: Hybrid zero dynamics of planar biped walkers. IEEE Trans. Automat. Contr. 48(1), 42–56 (2003)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton, FL (2007)CrossRefGoogle Scholar
  31. 31.
    Wisse, M.: Essentials of dynamic walking—analysis and design of two-legged robots. Ph.d. Thesis, Faculty of Mechanical Engineering, Technische Universiteit Delft (2004)Google Scholar
  32. 32.
    Wisse, M.: Three additions to passive dynamic walking; actuation, an upper body, and 3d stability. In: Proceedings of the 2004 IEEE International Conference on Humanoid Robots, vol. 1, pp. 113–132 (2004)Google Scholar
  33. 33.
    Wisse, M., Feliksdal, G., Van Frankkenhuyzen, J., Moyer, B.: Passive-based walking robot. IEEE Robot. Autom. Mag. 14(2), 52–62 (2007)CrossRefGoogle Scholar
  34. 34.
    Wisse, M., Hobbelen, D., Rotteveel, R., Anderson, S., Zeglin, G.: Ankle springs instead of arc-shaped feet for passive dynamic walkers. In: Proceedings of the 2006 IEEE International Conference on Humanoid Robots, pp. 110–116 (2006)Google Scholar
  35. 35.
    Yamasaki, F., Hosoda, K., Asada, M.: An energy consumption based control for humanoid walking. In: Proceedings of the 2002 IEEE International Conference on Intelligent Robots and Systems, vol. 3, pp. 2473–2477 (2002)Google Scholar
  36. 36.
    Yamasaki, F., Endo, K., Asada, M., Kitano, H.: A control method for humanoid biped walking with limited torque. In: RoboCup 2001: Robot Soccer World Cup V, pp. 60–70. Springer-Verlag, London, UK (2002)CrossRefGoogle Scholar
  37. 37.
    Yamasaki, F., Endo, K., Asada, M., Kitano, H.: An energy-efficient walking for a low-cost humanoid robot pino. AI Mag. 23(1), 60–61 (2002)Google Scholar
  38. 38.
    Yamasaki, F., Endo, K., Kitano, H., Asada, M.: Acquisition of humanoid walking motion using genetic algorithm-considering characteristics of servo modules. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation, vol. 3, pp. 3123–3128 (2002)Google Scholar
  39. 39.
    Zhao, M., Zhang, J., Dong, H., Liu, Y., Li, L., Su, X.: Humanoid robot gait generation based on limit cycle stability. In: RoboCup 2008: Robot Soccer World Cup XII, pp. 403–413. Springer-Verlag, Berlin, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Paul Vallejos
    • 1
    • 2
  • Javier Ruiz-del-Solar
    • 1
    • 2
  • Francisco Swett
    • 1
  1. 1.Department of Electrical EngineeringUniversidad de ChileSantiagoChile
  2. 2.Advanced Mining Technology CenterUniversidad de ChileSantiagoChile

Personalised recommendations