Advertisement

Journal of Intelligent & Robotic Systems

, Volume 64, Issue 1, pp 7–31 | Cite as

Mapping for the Support of First Responders in Critical Domains

  • Alexander Kleiner
  • Christian Dornhege
Article

Abstract

In critical domains such as urban search and rescue (USAR), and bomb disposal, the deployment of teleoperated robots is essential to reduce the risk of first responder personnel. Teleoperation is a difficult task, particularly when controlling robots from an isolated safety zone. In general, the operator has to solve simultaneously the problems of mission planning, target identification, robot navigation, and robot control. We introduce a system to support teleoperated navigation with real-time mapping consisting of a two-step scan matching method that re-considers data associations during the search over transformations. The algorithm processes data from laser range finder and gyroscope only, thereby it is independent from the robot platform. Furthermore, we introduce a user-guided procedure for improving the global consistency of maps generated by the scan matcher. Globally consistent maps are computed by a graph-based maximum likelihood method that is biased by localizing crucial parts of the scan matcher trajectory on a prior given geo-tiff image. The approach has been implemented as an embedded system and extensively tested on robot platforms designed for teleoperation in critical situations, such as bomb disposal. Furthermore, the system was evaluated in a test maze by first responders during the Disaster City event in Texas, 2008.

Keywords

SLAM Mapping HRI Teleoperation Operator assistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burgard, W., Stachniss, C., Grisetti, G., Steder, B., Kümmerle, R., Dornhege, C.: Ruhnke, M., Kleiner, A., Tardós, J.D.: A comparison of slam algorithms based on a graph of relations. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (IROS). St. Louis, MO (2009)Google Scholar
  2. 2.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  3. 3.
    Chen, C., Wang, H.: Large-scale loop-closing by fusing range data and aerial image. Int. J. Robot. Autom. 22(2), 160–169 (2007)Google Scholar
  4. 4.
    Cox, I.J.: Blanche: position estimation for an autonomous robot vehicle. In: Iyengar, S.S., Elfes, A. (eds.) Autonomous Mobile Robots: Control, Planning, and Architecture, vol. 2, pp. 285–292. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  5. 5.
    Dellaert, F.: Square Root SAM. In: Proc. of Robotics: Science and Systems (RSS), pp. 177–184. Cambridge, MA (2005)Google Scholar
  6. 6.
    Eustice, R., Singh, H., Leonard, J.J.: Exactly sparse delayed-state filters. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 2428–2435. Barcelona, Spain (2005)Google Scholar
  7. 7.
    Früh, C., Zakhor, A.: An automated method for large-scale, ground-based city model acquisition. Int. J. Comput. Vis. 60, 5–24 (2004)CrossRefGoogle Scholar
  8. 8.
    Grisetti, G., Stachniss C., Burgard, W.: Improving grid-based SLAM with rao-blackwellized particle filters by adaptive proposals and selective resampling. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 667–672. Barcelona, Spain (2005)Google Scholar
  9. 9.
    Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based SLAM with Rao-Black-wellized particle filters by adaptive proposals and selective resampling. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 2443–2448. Barcelona, Spain (2005)Google Scholar
  10. 10.
    Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Efficient estimation of accurate maximum likelihood maps in 3D. In: Proc. of the Int. Conf. on Intelligent Robots and Systems (IROS). San Diego, CA (2007)Google Scholar
  11. 11.
    Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. Robot. Autom. 23, 34–46 (2007)Google Scholar
  12. 12.
    Grisetti, G., Stachniss, C., Grzonka, S., Burgard, W.: A tree parameterization for efficiently computing maximum likelihood maps using gradient descent. In: Proc. of Robotics: Science and Systems (RSS). Atlanta, GA (2007)Google Scholar
  13. 13.
    Grisetti, G., Stachniss, C., Burgard, W.: Non-linear constraint network optimization for efficient map learning. IEEE Trans. Intell. Transp. Syst. 10(3), 428–439 (2009)CrossRefGoogle Scholar
  14. 14.
    Gutmann, J.-S., Konolige, K.: Incremental mapping of large cyclic environments. In: Proc. of the IEEE Int. Symposium on Computational Intelligence in Robotics and Automation (CIRA) (1999)Google Scholar
  15. 15.
    Gutmann, J.-S.: Robuste Navigation autonomer mobiler Systeme. PhD thesis, Albert-Ludwigs-Universität Freiburg. ISBN 3-89838-241-9 (2000)Google Scholar
  16. 16.
    Hähnel, D.: Mapping with Mobile Robots. PhD thesis, Universität Freiburg. Freiburg, Deutschland (2005)Google Scholar
  17. 17.
    Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new approach for filtering nonlinear systems. In: Proc. of the American Control Conference, pp. 1628–1632. Seattle, WA (1995)Google Scholar
  18. 18.
    Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: fast incremental smoothing and mapping with efficient data association. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA). Rome, Italy (2007)Google Scholar
  19. 19.
    Kleiner, A., Scrapper, C., Jacoff, A.: RoboCupRescue Interleague Challenge 2009: bridging the gap between simulation and reality. In: Proceedings of the 9th Workshop on Performance Metrics for Intelligent Systems (PerMIS ‘09), pp. 115–121. ACM, New York (2009). doi:10.1145/1865909.1865933 CrossRefGoogle Scholar
  20. 20.
    Korah, T., Rasmussen, C.: Probabilistic contour extraction with model-switching for vehicle localization. Intelligent Vehicles Symposium, 2004 IEEE, pp. 710–715 (2004)Google Scholar
  21. 21.
    Kümmerle, R., Steder, B., Dornhege, C., Kleiner, A., Grisetti, G., Burgard, W.: Large scale graph-based SLAM using aerial images as prior information. In: Proceedings of Robotics: Science and Systems (RSS). Seattle, WA (2009)Google Scholar
  22. 22.
    Leonard, J.J., Durrant-Whyte, H.F.: Mobile robot localization by tracking geometric beacons. IEEE Trans. Robot. Autom. 7(4), 376–382 (1991)CrossRefGoogle Scholar
  23. 23.
    Leung, K.Y.K., Clark, C.M., Huissoon, J.P.: Localization in urban environments by matching ground level video images with an aerial image. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA). Pasadena, CA (2008)Google Scholar
  24. 24.
    Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robots 4, 333–349 (1997)CrossRefGoogle Scholar
  25. 25.
    Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2d range scans. J. Intell. Robot. Syst. 18(3), 249–275 (1997)CrossRefGoogle Scholar
  26. 26.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: Proc. of the Int. Conf. on Artificial Intelligence (IJCAI), pp. 1151–1156. Acapulco, Mexico (2003)Google Scholar
  27. 27.
    Moravec, H.P., Elfes, A.E.: High resolution maps from wide angle sonar. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 116–121 (1985)Google Scholar
  28. 28.
    Moravec, H.P.: Sensor fusion in certainty grids for mobile robots. AI Mag. 9(2), 61–74 (1988)Google Scholar
  29. 29.
    Olson, E., Leonard, J., Teller, S.: Fast iterative optimization of pose graphs with poor initial estimates. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 2262–2269 (2006)Google Scholar
  30. 30.
    Ranganathan, A., Kaess, M., Dellaert, F.: Loopy sam. In: Proc. of the Int. Conf. on Artificial Intelligence (IJCAI) (2007)Google Scholar
  31. 31.
    Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial realtionships in robotics. In: Cox, I., Wilfong, G., (eds.) Autonomous Robot Vehicles, pp. 167–193. Springer Verlag (1990)Google Scholar
  32. 32.
    Stachniss, C., Frese, U., Grisetti, G.: OpenSLAM.org—Give Your Algorithm to the Community. http://www.openslam.org (2007)
  33. 33.
    Thrun, S., Liu, Y., Koller, D., Ng, A.Y., Ghahramani, Z., Durrant-Whyte, H.: Simultaneous localization and mapping with sparse extended information filters. Int. J. Rob. Res. 23(7/8), 693–716 (2004)CrossRefGoogle Scholar
  34. 34.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)Google Scholar
  35. 35.
    Uhlmann, J.: Dynamic Map Building and Localization: New Theoretical Foundations. PhD thesis, University of Oxford (1995)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Computer Science DepartmentUniversity of FreiburgFreiburgGermany

Personalised recommendations