Advertisement

Journal of Intelligent & Robotic Systems

, Volume 62, Issue 2, pp 205–216 | Cite as

A Short Note on Point Singularities for Robot Manipulators

  • Rudi Penne
  • Erwin Smet
  • Przemyslaw Klosiewicz
Article

Abstract

We consider a specific type of singularities for kinematic chains, so-called point singularities. These were characterized in 2005 by Borcea and Streinu. We give a new proof for this result in the framework of the Exterior Algebra. As an illustration we give an exhaustive list of the point singularities of a specific robot manipulator.

Keywords

Robot kinematics Singularity Exterior algebra Line geometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, R.S.: A Treatise on the Theory of Screws. Cambridge University Press, Cambridge (1900)Google Scholar
  2. 2.
    Barnabei, M., Bini, A., Rota, G.-C.: On the exterior calculus of invariant theory. J. Algebra 96, 120–160 (1985)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Borcea, C., Streinu, I.: Singularities of hinge structures. In: Efficient Methods in Algebraic Geometry. MEGA ’05 (2005)Google Scholar
  4. 4.
    Crapo, H.H., Whiteley, W.: Statics of frameworks and motions of panel structures: a projective geometric introduction. Struct. Topol. 6, 43–82 (1982)MathSciNetGoogle Scholar
  5. 5.
    Dandurand, A.: The rigidity of compound spatial grids. Struct. Topol. 10, 41–56 (1984)MATHMathSciNetGoogle Scholar
  6. 6.
    Hao, F., McCarthy, J.M.: Conditions for line-based singularities in spatial platform manipulators. J. Robot. Syst. 15(1), 43–55 (1998)CrossRefMATHGoogle Scholar
  7. 7.
    Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robot Manipulation. Taylor & Francis, Bristol (1994)Google Scholar
  8. 8.
    Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2001)MATHGoogle Scholar
  9. 9.
    White, N.: Grassmann-Cayley algebra and robotics. J. Intell. Robot. Syst. 11(1–2), 91–107 (1994)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Industrial Sciences and TechnologyKarel de Grote-HogeschoolAntwerpBelgium
  2. 2.Department of Mathematics and Computer ScienceUniversity of AntwerpAntwerpBelgium

Personalised recommendations