A Vision-Based Guidance System for UAV Navigation and Safe Landing using Natural Landmarks

  • A. Cesetti
  • E. Frontoni
  • A. Mancini
  • P. Zingaretti
  • S. Longhi


In this paper a vision-based approach for guidance and safe landing of an Unmanned Aerial Vehicle (UAV) is proposed. The UAV is required to navigate from an initial to a final position in a partially known environment. The guidance system allows a remote user to define target areas from a high resolution aerial or satellite image to determine either the waypoints of the navigation trajectory or the landing area. A feature-based image-matching algorithm finds the natural landmarks and gives feedbacks to an onboard, hierarchical, behaviour-based control system for autonomous navigation and landing. Two algorithms for safe landing area detection are also proposed, based on a feature optical flow analysis. The main novelty is in the vision-based architecture, extensively tested on a helicopter, which, in particular, does not require any artificial landmark (e.g., helipad). Results show the appropriateness of the vision-based approach, which is robust to occlusions and light variations.


Vision Navigation and control Autonomous navigation and landing 


  1. 1.
    Valavanis, K.: Advances in unmanned aerial vehicles: state of the art and the road to autonomy. Intelligent Systems, Control and Automation: Science and Engineering 33 (2007)Google Scholar
  2. 2.
    Bejar, M., Ollero, A., Cuesta, F.: Modeling and control of autonomous helicopters, advances in control theory and applications. Lect. Notes Control Inf. Sci. 353 (2007)Google Scholar
  3. 3.
    Lee, D., Jin Kim, H., Sastry, S.: Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter. Int. J. Control Autom. Syst. 7(3), 419–428 (2009)CrossRefGoogle Scholar
  4. 4.
    Bernard, M., Kondak, K., Hommel, G.: Framework for development and test of embedded flight control software for autonomous small size helicopters. Embedded Systems – Modeling, Technology, and Applications, pp. 159–168 (2006)Google Scholar
  5. 5.
    Monteriù, A., Asthana, P., Valavanis, K., Longhi, S.: Model-based sensor fault detection and isolation system for unmanned ground vehicles: theoretical aspects (part i and ii). In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2007)Google Scholar
  6. 6.
    Conte, G., Doherty, P.: An integrated UAV navigation system based on aerial image matching. In: IEEE Aerospace Conference, pp. 1–10 (2008)Google Scholar
  7. 7.
    Luo, P., Pei, H.: An autonomous helicopter with vision based navigation. In: IEEE International Conference on Control and Automation (2007)Google Scholar
  8. 8.
    He, Z., Iyer, R.V., Chandler, P.R.: Vision-based UAV flight control and obstacle avoidance. In: American Control Conference (2006)Google Scholar
  9. 9.
    Mondragon, I.F., Campoy, P., Correa, J.F., Mejias, L.: Visual model feature tracking for UAV control. In: IEEE International Symposium on Intelligent Signal Processing, WISP (2007)Google Scholar
  10. 10.
    Campoy, P., Correa, J.F., Mondragón, I., Martínez, C., Olivares, M., Mejías, L., Artieda, J.: Computer vision onboard UAVs for civilian tasks. J. Intell. Robot. Syst. 54(1–3), 105–135 (2009)CrossRefGoogle Scholar
  11. 11.
    Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Vision-based odometry and SLAM for medium and high altitude flying UAVs. J. Intell. Robot. Syst. 54(1–3), 137–161 (2009)CrossRefGoogle Scholar
  12. 12.
    Bethke, B., Valenti, M., How, J.: Cooperative vision based estimation and tracking using multiple UAVs. In: Advances in Cooperative Control and Optimization. Lect. Notes Control Inf. Sci., vol. 369, pp. 179–189 (2007)Google Scholar
  13. 13.
    Merz, T., Duranti, S., Conte, G.: Autonomous landing of an unmanned helicopter based on vision and inertial sensing. Experimental Robotics IX, Springer Tracts in Advanced Robotics, vol. 21, pp. 343–352 (2006)Google Scholar
  14. 14.
    Daquan, T., Hongyue, Z.: Vision based navigation algorithm for autonomic landing of UAV without heading & attitude sensors. In: Proceedings of the Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, pp. 972–978 (2007)Google Scholar
  15. 15.
    Meingast, M., Geyer, C., Sastry, S.: Vision based terrain recovery for landing unmanned aerial vehicles. In: 43rd IEEE Conference on Decision and Control (CDC), vol. 2, pp. 1670–1675 (2004)Google Scholar
  16. 16.
    Shakernia, O., Vidal, R., Sharp, C.S., Ma, Y., Sastry, S.S.: Multiple view motion estimation and control for landing an unmanned aerial vehicle. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2793–2798 (2002)Google Scholar
  17. 17.
    Saripalli, S., Montgomery, J., Sukhatme, G.: Visually-guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom. 19(3), 371–381 (2003)CrossRefGoogle Scholar
  18. 18.
    Saripalli, S., Sukhatme, G.S.: Landing a helicopter on a moving target. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2030–2035 (2007)Google Scholar
  19. 19.
    Garcia-Padro, P.J., Sukhatme, G.S., Montgomery, J.F.: Towards vision-based safe landing for an autonomous helicopter. In: Robotics and Autonomous Systems, vol. 38, no. 1, pp. 19–29(11). Elsevier (2002)Google Scholar
  20. 20.
    Johnson, A., Montgomery, J., Matthies, L.: Vision guided landing of an autonomous helicopter in hazardous terrain. In: Proceedings of the IEEE International Conference on Robotics and Automation (2005)Google Scholar
  21. 21.
    Templeton, T., Shim, D.H., Geyer, C., Sastry, S.: Autonomous vision-based landing and terrain mapping using am MPC-controlled unmanned rotorcraft. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1349–1356 (2007)Google Scholar
  22. 22.
    Se, S., Lowe, D., Little, J.: Vision-based mobile robot localization and mapping using scale-invariant features. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2051–2058 (2001)Google Scholar
  23. 23.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  24. 24.
    Frontoni, E., Zingaretti, P.: Adaptive and fast scale invariant feature extraction. In: Second International Conference on Computer Vision Theory and Applications, Workshop on Robot Vision (2007)Google Scholar
  25. 25.
    Frontoni, E., Zingaretti, P.: Feature extraction under variable lighting conditions. CISI (2006)Google Scholar
  26. 26.
    Bramwell, A.R.S., Done, G., Balmford, D.: Bramwell’s Helicopter Dynamics, 2nd edn. Butterworth Heinemann (2001)Google Scholar
  27. 27.
    Mancini, A., Cesetti, A., Iuale’, A., Frontoni, E., Zingaretti, P., Longhi, S.: A framework for simulation and testing of UAVs in cooperative scenarios. In: International Symposium on Unmanned Aerial Vehicles (UAV’08) (2008)Google Scholar
  28. 28.
    Montgomery, J.: Learning helicopter control through “teaching by showing”. Ph.D. Thesis, School of Comp. Sci., USC (1999)Google Scholar
  29. 29.
    Mataric, M.J.: Behavior-based control: examples from navigation, learning and group behavior. J. Exp. Theor. Artif. Intell. (Special Issue on Software Architecture for Physical Agents) 9(2–3), 67–83 (1997)Google Scholar
  30. 30.
    Shim, D.H., Kirn, H.J., Sastry, S.: Hierarchical control system syntesys for rotorcraft-based unmanned aerial vehicles. In: AIAA Guidance, Navigation and Control Conference and Exhibit (2000)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • A. Cesetti
    • 1
  • E. Frontoni
    • 1
  • A. Mancini
    • 1
  • P. Zingaretti
    • 1
  • S. Longhi
    • 1
  1. 1.Dipartimento di Ingegneria Informatica, Gestionale e dell’AutomazioneUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations