Advertisement

An Adaptive Neuro-fuzzy Inference System for Robot Handling Fabrics with Curved Edges towards Sewing

  • Paraskevi Th. Zacharia
Article

Abstract

This paper presents the design of a neuro-fuzzy visual servoing controller for robot guiding fabrics with curved edges towards sewing. Fabrics comprising real cloths consist of curved edges of arbitrary curvatures that can not be standardized. To overcome this difficulty, the idea is to train the robot sewing system and to apply this methodology in a real-time operation environment. The proposed approach for robot sewing is based on visual servoing and a learning technique that combines neural networks and fuzzy logic. A novel genetic-oriented clustering method is used to construct the initial FIS models and then, adaptive neuro-fuzzy inference systems allow tuning them so that it is possible to obtain better estimates. Extensive experiments were carried out in order to build data sets using fabrics with curved edges of various curvatures. The proposed model is validated using fabrics that had not been included in the training process and the results demonstrate that the proposed approach is efficient and effective for robot guiding fabrics with arbitrary curved edges towards sewing.

Keywords

Adaptive neuro-fuzzy inference systems (ANFIS) Fuzzy logic Genetic-based clustering Robot handling Flexible materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Torgerson, E., Paul, F.-W.: Vision-guided robotic fabric manipulation for apparel manufacturing. IEEE Control Syst. Mag. 8(1), 14–20 (1988). doi: 10.1109/37.463 CrossRefGoogle Scholar
  2. 2.
    Kudo, M., Nasu, Y., Mitobe, K., Borovac, B.: Multi-arm robot control system for manipulation of flexible materials in sewing operation. Mechatronics 10(8), 371–402 (2000). doi: 10.1016/S0957-4158(99)00047-1 CrossRefGoogle Scholar
  3. 3.
    Gershon, D., Porat, I.: Vision servo control of a robotic sewing system. Proc. IEEE Int. Conf. Robotics Automat. 3, 1830–1835 (1988)Google Scholar
  4. 4.
    Zacharia, P., Mariolis, I., Aspragathos, N., Dermatas, E.: Robot handling fabrics with curved edges based on visual servoing and polygonal approximation. Proc. Inst. Mech. Eng., B J. Eng. Manuf. 222(10), 1263–1274 (2008). doi: 10.1243/09544054JEM999 (special issue)CrossRefGoogle Scholar
  5. 5.
    Sanchez, E., Shibata, T., Zadeh, L.A.: Genetic Algorithms and Fuzzy Logic Systems. World Scientific, River Edge (1997)Google Scholar
  6. 6.
    Lee, C.C.: Fuzzy logic in control systems: fuzzy logic controller. IEEE Trans. Syst. Man Cybern. 20(2), 404–434 (1990). doi: 10.1109/21.52551 MATHCrossRefGoogle Scholar
  7. 7.
    Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988). doi: 10.1016/0165-0114(88)90113-3 MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)MATHGoogle Scholar
  9. 9.
    Mannle, M.: FTSM—Fast Takagi-Sugeno Fuzzy Modeling. Institute for Computer Design and Fault Tolerance, University of Karlsruhe, Karlsruhe (2001)Google Scholar
  10. 10.
    Delgado, M.R., Von Zuben, F., Gomide, F.: Hierarchical genetic fuzzy systems. Inf. Sci. 136(1), 29–52 (2001). doi: 10.1016/S0020-0255(01)00140-2 MATHCrossRefGoogle Scholar
  11. 11.
    Jang, J.-S.R.: ANFIS: Adaptive network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993). doi: 10.1109/21.256541 CrossRefGoogle Scholar
  12. 12.
    Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computation Approach to Learning and Machine Intelligence. Prentice Hall, Upper Saddle River (1997)Google Scholar
  13. 13.
    Rizzi, A., Mascioli F.M.F., Martinelli G.: Automatic training of ANFIS networks. In: Proceeding of IEEE International Fuzzy Systems Conference, Korea (1999)Google Scholar
  14. 14.
    Marichal, G.N., Acosta, L., Moreno, L., Méndez, J.A., Rodrigo, J.J., Sigut, M.: Obstacle avoidance for a mobile robot: a neuro-fuzzy approach. Fuzzy Sets Syst. 124(2), 171–179 (2001). doi: 10.1016/S0165-0114(00)00095-6 MATHCrossRefGoogle Scholar
  15. 15.
    Rusu, P., Petriu, E.M., Whalen, T.E., Cornell, A., Spoelder H.J.W.: Behaviour-based neuro fuzzy controller for mobile robot navigation. IEEE Trans. Instrum. Meas. 52(4), 1335–1340 (2003). doi: 10.1109/TIM.2003.816846 CrossRefGoogle Scholar
  16. 16.
    Hui, N.B., Mahendar, V., Pratihar, D.K.: Time-optimal, collision-free navigation of a car-like mobile robot using neuro-fuzzy approaches. Fuzzy Sets Syst. 157(16), 2171–2204 (2006). doi: 10.1016/j.fss.2006.04.004 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lo, S.-P.: An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling. J. Mater. Process. Technol. 142(3), 665–675 (2003). doi: 10.1016/S0924-0136(03)00687-3 CrossRefGoogle Scholar
  18. 18.
    Nariman-Zadeh, N., Darvizeh, A., Dadfarmai, M.H.: Design of ANFIS networks using hybrid genetic and SVD methods for the modelling of explosive cutting process. J. Mater. Process. Technol. 155–156, 1415–1421 (2004). doi: 10.1016/j.jmatprotec.2004.04.228 CrossRefGoogle Scholar
  19. 19.
    Çağatay Bayindir, K., Urğas Cuma, M., Tümay, M.: Hierarchical neuro-fuzzy current control for a shunt active power filter. Neural Comput. Appl. 15(3–4), 223–238 (2006). doi: 10.1007/s00521-005-0024-8 Google Scholar
  20. 20.
    Torres, S.P., Peralta, W.H., Castro, C.A.: Power system loading margin estimation using a neuro-fuzzy approach. IEEE Trans. Power Syst. 22(4), 1955–1964 (2007). doi: 10.1109/TPWRS.2007.907380 CrossRefGoogle Scholar
  21. 21.
    Zacharia, P.T., Aspragathos, N.A.: Genetically oriented clustering using variable length chromosomes. In: I*PROMS NoE Virtual International Conference on Intelligent Production Machines and Systems, 1–14 July 2008Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations